Abstract
Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of the zinc-containing active site of FT. Although several X-ray structures of FT have been reported, detailed information regarding the active site conformational flexibility of the enzyme is still not available. Molecular dynamics (MD) simulations of FT can offer the requisite information, but have not been applied due to a lack of effective methods for simulating the four-ligand coordination of zinc in proteins. Here, we report in detail the problems that occurred in the conventional MD simulations of the zinc-bound FT and a solution to these problems by employing a simple method that uses cationic dummy atoms to impose orientational requirement for zinc ligands. A successful 1.0 ns (1.0 fs time step) MD simulation of zinc-bound FT suggests that nine conserved residues (Asn127alpha, Gln162alpha, Asn165alpha, Gln195alpha, His248beta, Lys294beta, Leu295beta, Lys353beta, and Ser357beta) in the active site of mammalian FT are relatively mobile. Some of these residues might be involved in the ligand-induced active site conformational rearrangement upon binding and deserve attention in screening and design of improved FT inhibitors for cancer chemotherapy.
Full Text
The Full Text of this article is available as a PDF (669.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aqvist J., Warshel A. Computer simulation of the initial proton transfer step in human carbonic anhydrase I. J Mol Biol. 1992 Mar 5;224(1):7–14. doi: 10.1016/0022-2836(92)90572-2. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Dunten P., Kammlott U., Crowther R., Weber D., Palermo R., Birktoft J. Protein farnesyltransferase: structure and implications for substrate binding. Biochemistry. 1998 Jun 2;37(22):7907–7912. doi: 10.1021/bi980531o. [DOI] [PubMed] [Google Scholar]
- Gibbs J. B., Oliff A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu Rev Pharmacol Toxicol. 1997;37:143–166. doi: 10.1146/annurev.pharmtox.37.1.143. [DOI] [PubMed] [Google Scholar]
- Kohl N. E., Mosser S. D., deSolms S. J., Giuliani E. A., Pompliano D. L., Graham S. L., Smith R. L., Scolnick E. M., Oliff A., Gibbs J. B. Selective inhibition of ras-dependent transformation by a farnesyltransferase inhibitor. Science. 1993 Jun 25;260(5116):1934–1937. doi: 10.1126/science.8316833. [DOI] [PubMed] [Google Scholar]
- Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785–789. doi: 10.1103/physrevb.37.785. [DOI] [PubMed] [Google Scholar]
- Leonard D. M. Ras farnesyltransferase: a new therapeutic target. J Med Chem. 1997 Sep 12;40(19):2971–2990. doi: 10.1021/jm970226l. [DOI] [PubMed] [Google Scholar]
- Long S. B., Casey P. J., Beese L. S. Cocrystal structure of protein farnesyltransferase complexed with a farnesyl diphosphate substrate. Biochemistry. 1998 Jul 7;37(27):9612–9618. doi: 10.1021/bi980708e. [DOI] [PubMed] [Google Scholar]
- Long S. B., Casey P. J., Beese L. S. The basis for K-Ras4B binding specificity to protein farnesyltransferase revealed by 2 A resolution ternary complex structures. Structure. 2000 Feb 15;8(2):209–222. doi: 10.1016/s0969-2126(00)00096-4. [DOI] [PubMed] [Google Scholar]
- Lu D., Voth G. A. Molecular dynamics simulations of human carbonic anhydrase II: insight into experimental results and the role of solvation. Proteins. 1998 Oct 1;33(1):119–134. [PubMed] [Google Scholar]
- Park H. W., Boduluri S. R., Moomaw J. F., Casey P. J., Beese L. S. Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science. 1997 Mar 21;275(5307):1800–1804. doi: 10.1126/science.275.5307.1800. [DOI] [PubMed] [Google Scholar]
- Perola E., Xu K., Kollmeyer T. M., Kaufmann S. H., Prendergast F. G., Pang Y. P. Successful virtual screening of a chemical database for farnesyltransferase inhibitor leads. J Med Chem. 2000 Feb 10;43(3):401–408. doi: 10.1021/jm990408a. [DOI] [PubMed] [Google Scholar]
- Pettersson G. Liver alcohol dehydrogenase. CRC Crit Rev Biochem. 1987;21(4):349–389. [PubMed] [Google Scholar]
- Prendergast G. C., Davide J. P., deSolms S. J., Giuliani E. A., Graham S. L., Gibbs J. B., Oliff A., Kohl N. E. Farnesyltransferase inhibition causes morphological reversion of ras-transformed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol Cell Biol. 1994 Jun;14(6):4193–4202. doi: 10.1128/mcb.14.6.4193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiss Y., Goldstein J. L., Seabra M. C., Casey P. J., Brown M. S. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell. 1990 Jul 13;62(1):81–88. doi: 10.1016/0092-8674(90)90242-7. [DOI] [PubMed] [Google Scholar]
- Ryde U. Molecular dynamics simulations of alcohol dehydrogenase with a four- or five-coordinate catalytic zinc ion. Proteins. 1995 Jan;21(1):40–56. doi: 10.1002/prot.340210106. [DOI] [PubMed] [Google Scholar]
- Sebti S. M., Hamilton A. D. Inhibition of Ras prenylation: a novel approach to cancer chemotherapy. Pharmacol Ther. 1997;74(1):103–114. doi: 10.1016/s0163-7258(97)00014-4. [DOI] [PubMed] [Google Scholar]
- Stote R. H., Karplus M. Zinc binding in proteins and solution: a simple but accurate nonbonded representation. Proteins. 1995 Sep;23(1):12–31. doi: 10.1002/prot.340230104. [DOI] [PubMed] [Google Scholar]
- Strickland C. L., Weber P. C., Windsor W. T., Wu Z., Le H. V., Albanese M. M., Alvarez C. S., Cesarz D., del Rosario J., Deskus J. Tricyclic farnesyl protein transferase inhibitors: crystallographic and calorimetric studies of structure-activity relationships. J Med Chem. 1999 Jun 17;42(12):2125–2135. doi: 10.1021/jm990030g. [DOI] [PubMed] [Google Scholar]
- Strickland C. L., Windsor W. T., Syto R., Wang L., Bond R., Wu Z., Schwartz J., Le H. V., Beese L. S., Weber P. C. Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue. Biochemistry. 1998 Nov 24;37(47):16601–16611. doi: 10.1021/bi981197z. [DOI] [PubMed] [Google Scholar]
- Wasserman Z. R., Hodge C. N. Fitting an inhibitor into the active site of thermolysin: a molecular dynamics case study. Proteins. 1996 Feb;24(2):227–237. doi: 10.1002/(SICI)1097-0134(199602)24:2<227::AID-PROT9>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
- Wu Z., Demma M., Strickland C. L., Syto R., Le H. V., Windsor W. T., Weber P. C. High-level expression, purification, kinetic characterization and crystallization of protein farnesyltransferase beta-subunit C-terminal mutants. Protein Eng. 1999 Apr;12(4):341–348. doi: 10.1093/protein/12.4.341. [DOI] [PubMed] [Google Scholar]