Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Oct;9(10):1986–1992. doi: 10.1110/ps.9.10.1986

A 16-amino acid peptide from human alpha2-macroglobulin binds transforming growth factor-beta and platelet-derived growth factor-BB.

D J Webb 1, D W Roadcap 1, A Dhakephalkar 1, S L Gonias 1
PMCID: PMC2144455  PMID: 11106172

Abstract

Alpha2-macroglobulin (alpha2M) is a major carrier of transforming growth factor-beta (TGF-beta) in vitro and in vivo. By screening glutathione S-transferase (GST) fusion proteins with overlapping sequences, we localized the TGFbeta-binding site to aa 700-738 of the mature human alpha2M subunit. In separate experiments, we screened overlapping synthetic peptides corresponding to aa 696-777 of alpha2M and identified a single 16-mer (718-733) that binds TGF-beta1. Platelet-derived growth factor-BB (PDGF-BB) bound to the same peptide, even though TGF-beta and PDGF-BB share almost no sequence identity. The sequence of the growth factor-binding peptide, WDLVVVNSAGVAEVGV, included a high proportion of hydrophobic amino acids. The analogous peptide from murinoglobulin, a human alpha2M homologue that does not bind growth factors, contained only three nonconservative amino acid substitutions; however, the MUG peptide failed to bind TGF-beta1 and PDGF-BB. These results demonstrate that a distinct and highly-restricted site in alpha2M, positioned near the C-terminal flank of the bait region, mediates growth factor binding. At least part of the growth factor-binding site is encoded by exon 18 of the alpha2M gene, which is notable for a 5' splice site polymorphism that has been implicated in Alzheimer's Disease.

Full Text

The Full Text of this article is available as a PDF (352.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett A. J., Brown M. A., Sayers C. A. The electrophoretically 'slow' and 'fast' forms of the alpha 2-macroglobulin molecule. Biochem J. 1979 Aug 1;181(2):401–418. doi: 10.1042/bj1810401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrett A. J., Starkey P. M. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973 Aug;133(4):709–724. doi: 10.1042/bj1330709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blacker D., Wilcox M. A., Laird N. M., Rodes L., Horvath S. M., Go R. C., Perry R., Watson B., Jr, Bassett S. S., McInnis M. G. Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet. 1998 Aug;19(4):357–360. doi: 10.1038/1243. [DOI] [PubMed] [Google Scholar]
  4. Bowen M. E., Gettins P. G. Bait region involvement in the dimer-dimer interface of human alpha 2-macroglobulin and in mediating gross conformational change. Evidence from cysteine variants that form interdimer disulfides. J Biol Chem. 1998 Jan 16;273(3):1825–1831. doi: 10.1074/jbc.273.3.1825. [DOI] [PubMed] [Google Scholar]
  5. Crookston K. P., Webb D. J., Wolf B. B., Gonias S. L. Classification of alpha 2-macroglobulin-cytokine interactions based on affinity of noncovalent association in solution under apparent equilibrium conditions. J Biol Chem. 1994 Jan 14;269(2):1533–1540. [PubMed] [Google Scholar]
  6. Fabrizi C., Businaro R., Lauro G. M., Starace G., Fumagalli L. Activated alpha2macroglobulin increases beta-amyloid (25-35)-induced toxicity in LAN5 human neuroblastoma cells. Exp Neurol. 1999 Feb;155(2):252–259. doi: 10.1006/exnr.1998.6978. [DOI] [PubMed] [Google Scholar]
  7. Gettins P., Cunningham L. W. Identification of 1H resonances from the bait region of human alpha 2-macroglobulin and effects of proteases and methylamine. Biochemistry. 1986 Sep 9;25(18):5011–5017. doi: 10.1021/bi00366a007. [DOI] [PubMed] [Google Scholar]
  8. Gonias S. L., Carmichael A., Mettenburg J. M., Roadcap D. W., Irvin W. P., Webb D. J. Identical or overlapping sequences in the primary structure of human alpha(2)-macroglobulin are responsible for the binding of nerve growth factor-beta, platelet-derived growth factor-BB, and transforming growth factor-beta. J Biol Chem. 2000 Feb 25;275(8):5826–5831. doi: 10.1074/jbc.275.8.5826. [DOI] [PubMed] [Google Scholar]
  9. Gonias S. L., LaMarre J., Crookston K. P., Webb D. J., Wolf B. B., Lopes M. B., Moses H. L., Hayes M. A. Alpha 2-macroglobulin and the alpha 2-macroglobulin receptor/LRP. A growth regulatory axis. Ann N Y Acad Sci. 1994 Sep 10;737:273–290. doi: 10.1111/j.1749-6632.1994.tb44318.x. [DOI] [PubMed] [Google Scholar]
  10. Gonias S. L., Reynolds J. A., Pizzo S. V. Physical properties of human alpha 2-macroglobulin following reaction with methylamine and trypsin. Biochim Biophys Acta. 1982 Aug 10;705(3):306–314. doi: 10.1016/0167-4838(82)90252-7. [DOI] [PubMed] [Google Scholar]
  11. Hall S. W., LaMarre J., Marshall L. B., Hayes M. A., Gonias S. L. Binding of transforming growth factor-beta 1 to methylamine-modified alpha 2-macroglobulin and to binary and ternary alpha 2-macroglobulin-proteinase complexes. Biochem J. 1992 Jan 15;281(Pt 2):569–575. doi: 10.1042/bj2810569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howard G. C., Yamaguchi Y., Misra U. K., Gawdi G., Nelsen A., DeCamp D. L., Pizzo S. V. Selective mutations in cloned and expressed alpha-macroglobulin receptor binding fragment alter binding to either the alpha2-macroglobulin signaling receptor or the low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor. J Biol Chem. 1996 Jun 14;271(24):14105–14111. doi: 10.1074/jbc.271.24.14105. [DOI] [PubMed] [Google Scholar]
  13. Imber M. J., Pizzo S. V. Clearance and binding of two electrophoretic "fast" forms of human alpha 2-macroglobulin. J Biol Chem. 1981 Aug 10;256(15):8134–8139. [PubMed] [Google Scholar]
  14. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  15. Lysiak J. J., Hussaini I. M., Webb D. J., Glass W. F., 2nd, Allietta M., Gonias S. L. Alpha 2-macroglobulin functions as a cytokine carrier to induce nitric oxide synthesis and cause nitric oxide-dependent cytotoxicity in the RAW 264.7 macrophage cell line. J Biol Chem. 1995 Sep 15;270(37):21919–21927. doi: 10.1074/jbc.270.37.21919. [DOI] [PubMed] [Google Scholar]
  16. Malek-Ahmadi P. Cytokines in dementia of the Alzheimer's type (DAT): relevance to research and treatment. Neurosci Biobehav Rev. 1998 May;22(3):389–394. doi: 10.1016/s0149-7634(97)00027-4. [DOI] [PubMed] [Google Scholar]
  17. Nielsen K. L., Holtet T. L., Etzerodt M., Moestrup S. K., Gliemann J., Sottrup-Jensen L., Thogersen H. C. Identification of residues in alpha-macroglobulins important for binding to the alpha2-macroglobulin receptor/Low density lipoprotein receptor-related protein. J Biol Chem. 1996 May 31;271(22):12909–12912. doi: 10.1074/jbc.271.22.12909. [DOI] [PubMed] [Google Scholar]
  18. O'Connor-McCourt M. D., Wakefield L. M. Latent transforming growth factor-beta in serum. A specific complex with alpha 2-macroglobulin. J Biol Chem. 1987 Oct 15;262(29):14090–14099. [PubMed] [Google Scholar]
  19. Ren R. F., Hawver D. B., Kim R. S., Flanders K. C. Transforming growth factor-beta protects human hNT cells from degeneration induced by beta-amyloid peptide: involvement of the TGF-beta type II receptor. Brain Res Mol Brain Res. 1997 Sep;48(2):315–322. doi: 10.1016/s0169-328x(97)00108-3. [DOI] [PubMed] [Google Scholar]
  20. Rose G. D., Geselowitz A. R., Lesser G. J., Lee R. H., Zehfus M. H. Hydrophobicity of amino acid residues in globular proteins. Science. 1985 Aug 30;229(4716):834–838. doi: 10.1126/science.4023714. [DOI] [PubMed] [Google Scholar]
  21. Ruff E., Rizzino A. Preparation and binding of radioactively labeled porcine transforming growth factor type beta. Biochem Biophys Res Commun. 1986 Jul 31;138(2):714–719. doi: 10.1016/s0006-291x(86)80555-1. [DOI] [PubMed] [Google Scholar]
  22. Sottrup-Jensen L. Alpha-macroglobulins: structure, shape, and mechanism of proteinase complex formation. J Biol Chem. 1989 Jul 15;264(20):11539–11542. [PubMed] [Google Scholar]
  23. Sottrup-Jensen L., Gliemann J., Van Leuven F. Domain structure of human alpha 2-macroglobulin. Characterization of a receptor-binding domain obtained by digestion with papain. FEBS Lett. 1986 Sep 1;205(1):20–24. doi: 10.1016/0014-5793(86)80857-2. [DOI] [PubMed] [Google Scholar]
  24. Sottrup-Jensen L., Sand O., Kristensen L., Fey G. H. The alpha-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian alpha-macroglobulins. J Biol Chem. 1989 Sep 25;264(27):15781–15789. [PubMed] [Google Scholar]
  25. Sottrup-Jensen L., Stepanik T. M., Kristensen T., Wierzbicki D. M., Jones C. M., Lønblad P. B., Magnusson S., Petersen T. E. Primary structure of human alpha 2-macroglobulin. V. The complete structure. J Biol Chem. 1984 Jul 10;259(13):8318–8327. [PubMed] [Google Scholar]
  26. Strickland D. K., Ashcom J. D., Williams S., Burgess W. H., Migliorini M., Argraves W. S. Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem. 1990 Oct 15;265(29):17401–17404. [PubMed] [Google Scholar]
  27. Umans L., Serneels L., Overbergh L., Lorent K., Van Leuven F., Van den Berghe H. Targeted inactivation of the mouse alpha 2-macroglobulin gene. J Biol Chem. 1995 Aug 25;270(34):19778–19785. doi: 10.1074/jbc.270.34.19778. [DOI] [PubMed] [Google Scholar]
  28. Umans L., Serneels L., Overbergh L., Stas L., Van Leuven F. alpha2-macroglobulin- and murinoglobulin-1- deficient mice. A mouse model for acute pancreatitis. Am J Pathol. 1999 Sep;155(3):983–993. doi: 10.1016/s0002-9440(10)65198-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Van Leuven F., Cassiman J. J., Van den Berghe H. Functional modifications of alpha 2-macroglobulin by primary amines. I. Characterization of alpha 2 M after derivatization by methylamine and by factor XIII. J Biol Chem. 1981 Sep 10;256(17):9016–9022. [PubMed] [Google Scholar]
  30. Weaver A. M., Owens G. K., Gonias S. L. Native and activated forms of alpha 2-macroglobulin increase expression of platelet-derived growth factor alpha-receptor in vascular smooth muscle cells. Evidence for autocrine transforming growth factor-beta activity. J Biol Chem. 1995 Dec 22;270(51):30741–30748. doi: 10.1074/jbc.270.51.30741. [DOI] [PubMed] [Google Scholar]
  31. Webb D. J., Crookston K. P., Figler N. L., Lamarre J., Gonias S. L. Differences in the binding of transforming growth factor beta 1 to the acute-phase reactant and constitutively synthesized alpha-macroglobulins of rat. Biochem J. 1995 Dec 1;312(Pt 2):579–586. doi: 10.1042/bj3120579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Webb D. J., Wen J., Karns L. R., Kurilla M. G., Gonias S. L. Localization of the binding site for transforming growth factor-beta in human alpha2-macroglobulin to a 20-kDa peptide that also contains the bait region. J Biol Chem. 1998 May 22;273(21):13339–13346. doi: 10.1074/jbc.273.21.13339. [DOI] [PubMed] [Google Scholar]
  33. Webb D. J., Wen J., Lysiak J. J., Umans L., Van Leuven F., Gonias S. L. Murine alpha-macroglobulins demonstrate divergent activities as neutralizers of transforming growth factor-beta and as inducers of nitric oxide synthesis. A possible mechanism for the endotoxin insensitivity of the alpha2-macroglobulin gene knock-out mouse. J Biol Chem. 1996 Oct 4;271(40):24982–24988. doi: 10.1074/jbc.271.40.24982. [DOI] [PubMed] [Google Scholar]
  34. Wolf B. B., Gonias S. L. Neurotrophin binding to human alpha 2-macroglobulin under apparent equilibrium conditions. Biochemistry. 1994 Sep 20;33(37):11270–11277. doi: 10.1021/bi00203a024. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES