Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Oct;9(10):1905–1913. doi: 10.1110/ps.9.10.1905

The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex.

N Hayashi 1, Y Izumi 1, K Titani 1, N Matsushima 1
PMCID: PMC2144459  PMID: 11106163

Abstract

CAP-23/NAP-22, a neuron-specific protein kinase C substrate, is Nalpha-myristoylated and interacts with calmodulin (CaM) in the presence of Ca2+ ions. Takasaki et al. (1999, J Biol Chem 274:11848-11853) have recently found that the myristoylated N-terminal nonapeptide of CAP-23/NAP-22 (mC/N9) binds to Ca2+ -bound CaM (Ca2+/CaM). In the present study, small-angle X-ray scattering was used to investigate structural changes of Ca2+/CaM induced by its binding to mC/N9 in solution. The binding of one mC/N9 molecule induced an insignificant structural change in Ca2+/CaM. The 1:1 complex appeared to retain the extended conformation much like that of Ca2+/CaM in isolation. However, it could be seen that the binding of two mC/N9 molecules induced a drastic structural change in Ca2+/CaM, followed by a slight structural change by the binding of more than two but less than four mC/N9 molecules. Under the saturated condition (the molar ratio of 1:4), the radius of gyration (Rg) for the Ca2+/CaM-mC/N9 complex was 19.8 +/- 0.3 A. This value was significantly smaller than that of Ca2+/CaM (21.9 +/- 0.3 A), which adopted a dumbbell structure and was conversely 2-3 A larger than those of the complexes of Ca2+/CaM with the nonmyristoylated target peptides of myosin light chain kinase or CaM kinase II, which adopted a compact globular structure. The pair distance distribution function had no shoulder peak at around 40 A, which was mainly due to the dumbbell structure. These results suggest that Ca2+/CaM interacts with Nalpha-myristoylated CAP-23/NAP-22 differently than it does with other nonmyristoylated target proteins. The N-terminal amino acid sequence alignment of CAP-23/NAP-22 and other myristoylated proteins suggests that the protein myristoylation plays important roles not only in the binding of CAP-23/NAP-22 to Ca2+/CaM, but also in the protein-protein interactions related to other myristoylated proteins.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames J. B., Ishima R., Tanaka T., Gordon J. I., Stryer L., Ikura M. Molecular mechanics of calcium-myristoyl switches. Nature. 1997 Sep 11;389(6647):198–202. doi: 10.1038/38310. [DOI] [PubMed] [Google Scholar]
  2. Ames J. B., Porumb T., Tanaka T., Ikura M., Stryer L. Amino-terminal myristoylation induces cooperative calcium binding to recoverin. J Biol Chem. 1995 Mar 3;270(9):4526–4533. doi: 10.1074/jbc.270.9.4526. [DOI] [PubMed] [Google Scholar]
  3. Barbato G., Ikura M., Kay L. E., Pastor R. W., Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 1992 Jun 16;31(23):5269–5278. doi: 10.1021/bi00138a005. [DOI] [PubMed] [Google Scholar]
  4. Blackshear P. J. The MARCKS family of cellular protein kinase C substrates. J Biol Chem. 1993 Jan 25;268(3):1501–1504. [PubMed] [Google Scholar]
  5. Blackshear P. J., Verghese G. M., Johnson J. D., Haupt D. M., Stumpo D. J. Characteristics of the F52 protein, a MARCKS homologue. J Biol Chem. 1992 Jul 5;267(19):13540–13546. [PubMed] [Google Scholar]
  6. Blumenthal D. K., Takio K., Edelman A. M., Charbonneau H., Titani K., Walsh K. A., Krebs E. G. Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci U S A. 1985 May;82(10):3187–3191. doi: 10.1073/pnas.82.10.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borgese N., Aggujaro D., Carrera P., Pietrini G., Bassetti M. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes. J Cell Biol. 1996 Dec;135(6 Pt 1):1501–1513. doi: 10.1083/jcb.135.6.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caroni P., Aigner L., Schneider C. Intrinsic neuronal determinants locally regulate extrasynaptic and synaptic growth at the adult neuromuscular junction. J Cell Biol. 1997 Feb 10;136(3):679–692. doi: 10.1083/jcb.136.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carr S. A., Biemann K., Shoji S., Parmelee D. C., Titani K. n-Tetradecanoyl is the NH2-terminal blocking group of the catalytic subunit of cyclic AMP-dependent protein kinase from bovine cardiac muscle. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6128–6131. doi: 10.1073/pnas.79.20.6128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chow M., Newman J. F., Filman D., Hogle J. M., Rowlands D. J., Brown F. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature. 1987 Jun 11;327(6122):482–486. doi: 10.1038/327482a0. [DOI] [PubMed] [Google Scholar]
  11. Cook W. J., Walter L. J., Walter M. R. Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry. 1994 Dec 27;33(51):15259–15265. doi: 10.1021/bi00255a006. [DOI] [PubMed] [Google Scholar]
  12. Crivici A., Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct. 1995;24:85–116. doi: 10.1146/annurev.bb.24.060195.000505. [DOI] [PubMed] [Google Scholar]
  13. Della Rocca G. J., van Biesen T., Daaka Y., Luttrell D. K., Luttrell L. M., Lefkowitz R. J. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem. 1997 Aug 1;272(31):19125–19132. doi: 10.1074/jbc.272.31.19125. [DOI] [PubMed] [Google Scholar]
  14. Elshorst B., Hennig M., Försterling H., Diener A., Maurer M., Schulte P., Schwalbe H., Griesinger C., Krebs J., Schmid H. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Biochemistry. 1999 Sep 21;38(38):12320–12332. doi: 10.1021/bi9908235. [DOI] [PubMed] [Google Scholar]
  15. Erickson-Viitanen S., DeGrado W. F. Recognition and characterization of calmodulin-binding sequences in peptides and proteins. Methods Enzymol. 1987;139:455–478. doi: 10.1016/0076-6879(87)39106-2. [DOI] [PubMed] [Google Scholar]
  16. Faurobert E., Chen C. K., Hurley J. B., Teng D. H. Drosophila neurocalcin, a fatty acylated, Ca2+-binding protein that associates with membranes and inhibits in vitro phosphorylation of bovine rhodopsin. J Biol Chem. 1996 Apr 26;271(17):10256–10262. doi: 10.1074/jbc.271.17.10256. [DOI] [PubMed] [Google Scholar]
  17. Finn B. E., Evenäs J., Drakenberg T., Waltho J. P., Thulin E., Forsén S. Calcium-induced structural changes and domain autonomy in calmodulin. Nat Struct Biol. 1995 Sep;2(9):777–783. doi: 10.1038/nsb0995-777. [DOI] [PubMed] [Google Scholar]
  18. Glover C. J., Goddard C., Felsted R. L. N-myristoylation of p60src. Identification of a myristoyl-CoA:glycylpeptide N-myristoyltransferase in rat tissues. Biochem J. 1988 Mar 1;250(2):485–491. doi: 10.1042/bj2500485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Godsel L. M., Engman D. M. Flagellar protein localization mediated by a calcium-myristoyl/palmitoyl switch mechanism. EMBO J. 1999 Apr 15;18(8):2057–2065. doi: 10.1093/emboj/18.8.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Guy B., Kieny M. P., Riviere Y., Le Peuch C., Dott K., Girard M., Montagnier L., Lecocq J. P. HIV F/3' orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature. 1987 Nov 19;330(6145):266–269. doi: 10.1038/330266a0. [DOI] [PubMed] [Google Scholar]
  21. Harlan D. M., Graff J. M., Stumpo D. J., Eddy R. L., Jr, Shows T. B., Boyle J. M., Blackshear P. J. The human myristoylated alanine-rich C kinase substrate (MARCKS) gene (MACS). Analysis of its gene product, promoter, and chromosomal localization. J Biol Chem. 1991 Aug 5;266(22):14399–14405. [PubMed] [Google Scholar]
  22. Haun R. S., Tsai S. C., Adamik R., Moss J., Vaughan M. Effect of myristoylation on GTP-dependent binding of ADP-ribosylation factor to Golgi. J Biol Chem. 1993 Apr 5;268(10):7064–7068. [PubMed] [Google Scholar]
  23. Hayashi N., Matsubara M., Takasaki A., Titani K., Taniguchi H. An expression system of rat calmodulin using T7 phage promoter in Escherichia coli. Protein Expr Purif. 1998 Feb;12(1):25–28. doi: 10.1006/prep.1997.0807. [DOI] [PubMed] [Google Scholar]
  24. Heidorn D. B., Seeger P. A., Rokop S. E., Blumenthal D. K., Means A. R., Crespi H., Trewhella J. Changes in the structure of calmodulin induced by a peptide based on the calmodulin-binding domain of myosin light chain kinase. Biochemistry. 1989 Aug 8;28(16):6757–6764. doi: 10.1021/bi00442a032. [DOI] [PubMed] [Google Scholar]
  25. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  26. Ikura M., Kay L. E., Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990 May 15;29(19):4659–4667. doi: 10.1021/bi00471a022. [DOI] [PubMed] [Google Scholar]
  27. Kawamura S., Cox J. A., Nef P. Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin. Biochem Biophys Res Commun. 1994 Aug 30;203(1):121–127. doi: 10.1006/bbrc.1994.2157. [DOI] [PubMed] [Google Scholar]
  28. Kim J., Blackshear P. J., Johnson J. D., McLaughlin S. Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin. Biophys J. 1994 Jul;67(1):227–237. doi: 10.1016/S0006-3495(94)80473-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Klee C. B., Ren H., Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem. 1998 May 29;273(22):13367–13370. doi: 10.1074/jbc.273.22.13367. [DOI] [PubMed] [Google Scholar]
  30. Kobayashi M., Takamatsu K., Saitoh S., Noguchi T. Myristoylation of hippocalcin is linked to its calcium-dependent membrane association properties. J Biol Chem. 1993 Sep 5;268(25):18898–18904. [PubMed] [Google Scholar]
  31. Koegl M., Zlatkine P., Ley S. C., Courtneidge S. A., Magee A. I. Palmitoylation of multiple Src-family kinases at a homologous N-terminal motif. Biochem J. 1994 Nov 1;303(Pt 3):749–753. doi: 10.1042/bj3030749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kretsinger R. H., Rudnick S. E., Weissman L. J. Crystal structure of calmodulin. J Inorg Biochem. 1986 Oct-Nov;28(2-3):289–302. doi: 10.1016/0162-0134(86)80093-9. [DOI] [PubMed] [Google Scholar]
  33. Liu J., Sessa W. C. Identification of covalently bound amino-terminal myristic acid in endothelial nitric oxide synthase. J Biol Chem. 1994 Apr 22;269(16):11691–11694. [PubMed] [Google Scholar]
  34. Maekawa S., Maekawa M., Hattori S., Nakamura S. Purification and molecular cloning of a novel acidic calmodulin binding protein from rat brain. J Biol Chem. 1993 Jun 25;268(18):13703–13709. [PubMed] [Google Scholar]
  35. Matsushima N., Izumi Y., Matsuo T., Yoshino H., Ueki T., Miyake Y. Binding of both Ca2+ and mastoparan to calmodulin induces a large change in the tertiary structure. J Biochem. 1989 Jun;105(6):883–887. doi: 10.1093/oxfordjournals.jbchem.a122773. [DOI] [PubMed] [Google Scholar]
  36. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  37. Meador W. E., Means A. R., Quiocho F. A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993 Dec 10;262(5140):1718–1721. doi: 10.1126/science.8259515. [DOI] [PubMed] [Google Scholar]
  38. Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
  39. Mumby S. M., Heukeroth R. O., Gordon J. I., Gilman A. G. G-protein alpha-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci U S A. 1990 Jan;87(2):728–732. doi: 10.1073/pnas.87.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Musil L. S., Carr C., Cohen J. B., Merlie J. P. Acetylcholine receptor-associated 43K protein contains covalently bound myristate. J Cell Biol. 1988 Sep;107(3):1113–1121. doi: 10.1083/jcb.107.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  42. Olshevskaya E. V., Hughes R. E., Hurley J. B., Dizhoor A. M. Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem. 1997 May 30;272(22):14327–14333. doi: 10.1074/jbc.272.22.14327. [DOI] [PubMed] [Google Scholar]
  43. Osawa M., Kuwamoto S., Izumi Y., Yap K. L., Ikura M., Shibanuma T., Yokokura H., Hidaka H., Matsushima N. Evidence for calmodulin inter-domain compaction in solution induced by W-7 binding. FEBS Lett. 1999 Jan 15;442(2-3):173–177. doi: 10.1016/s0014-5793(98)01637-8. [DOI] [PubMed] [Google Scholar]
  44. Persechini A., Kretsinger R. H. The central helix of calmodulin functions as a flexible tether. J Biol Chem. 1988 Sep 5;263(25):12175–12178. [PubMed] [Google Scholar]
  45. Resh M. D. Myristylation and palmitylation of Src family members: the fats of the matter. Cell. 1994 Feb 11;76(3):411–413. doi: 10.1016/0092-8674(94)90104-x. [DOI] [PubMed] [Google Scholar]
  46. Resh M. D. Regulation of cellular signalling by fatty acid acylation and prenylation of signal transduction proteins. Cell Signal. 1996 Sep;8(6):403–412. doi: 10.1016/s0898-6568(96)00088-5. [DOI] [PubMed] [Google Scholar]
  47. Robbins S. M., Quintrell N. A., Bishop J. M. Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol Cell Biol. 1995 Jul;15(7):3507–3515. doi: 10.1128/mcb.15.7.3507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sarkar S. N., Bandyopadhyay S., Ghosh A., Sen G. C. Enzymatic characteristics of recombinant medium isozyme of 2'-5' oligoadenylate synthetase. J Biol Chem. 1999 Jan 15;274(3):1848–1855. doi: 10.1074/jbc.274.3.1848. [DOI] [PubMed] [Google Scholar]
  49. Seaton B. A., Head J. F., Engelman D. M., Richards F. M. Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering. Biochemistry. 1985 Nov 19;24(24):6740–6743. doi: 10.1021/bi00345a002. [DOI] [PubMed] [Google Scholar]
  50. Senin I. I., Zargarov A. A., Alekseev A. M., Gorodovikova E. N., Lipkin V. M., Philippov P. P. N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase. FEBS Lett. 1995 Nov 27;376(1-2):87–90. doi: 10.1016/0014-5793(95)01187-2. [DOI] [PubMed] [Google Scholar]
  51. Shoji S., Tashiro A., Kubota Y. Antimyristoylation of gag proteins in human T-cell leukemia and human immunodeficiency viruses with N-myristoyl glycinal diethylacetal. J Biochem. 1988 May;103(5):747–749. doi: 10.1093/oxfordjournals.jbchem.a122340. [DOI] [PubMed] [Google Scholar]
  52. Spilker C., Gundelfinger E. D., Braunewell K. H. Calcium- and myristoyl-dependent subcellular localization of the neuronal calcium-binding protein VILIP in transfected PC12 cells. Neurosci Lett. 1997 Apr 4;225(2):126–128. doi: 10.1016/s0304-3940(97)00201-2. [DOI] [PubMed] [Google Scholar]
  53. Takasaki A., Hayashi N., Matsubara M., Yamauchi E., Taniguchi H. Identification of the calmodulin-binding domain of neuron-specific protein kinase C substrate protein CAP-22/NAP-22. Direct involvement of protein myristoylation in calmodulin-target protein interaction. J Biol Chem. 1999 Apr 23;274(17):11848–11853. doi: 10.1074/jbc.274.17.11848. [DOI] [PubMed] [Google Scholar]
  54. Taniguchi H., Manenti S. Interaction of myristoylated alanine-rich protein kinase C substrate (MARCKS) with membrane phospholipids. J Biol Chem. 1993 May 15;268(14):9960–9963. [PubMed] [Google Scholar]
  55. Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
  56. Ueki T., Hiragi Y., Kataoka M., Inoko Y., Amemiya Y., Izumi Y., Tagawa H., Muroga Y. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation. Biophys Chem. 1985 Nov;23(1-2):115–124. doi: 10.1016/0301-4622(85)80069-7. [DOI] [PubMed] [Google Scholar]
  57. Wice B. M., Gordon J. I. A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin. J Cell Biol. 1992 Jan;116(2):405–422. doi: 10.1083/jcb.116.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Widmer F., Caroni P. Identification, localization, and primary structure of CAP-23, a particle-bound cytosolic protein of early development. J Cell Biol. 1990 Dec;111(6 Pt 2):3035–3047. doi: 10.1083/jcb.111.6.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yuan T., Vogel H. J. Calcium-calmodulin-induced dimerization of the carboxyl-terminal domain from petunia glutamate decarboxylase. A novel calmodulin-peptide interaction motif. J Biol Chem. 1998 Nov 13;273(46):30328–30335. doi: 10.1074/jbc.273.46.30328. [DOI] [PubMed] [Google Scholar]
  60. Zhu D., Cardenas M. E., Heitman J. Myristoylation of calcineurin B is not required for function or interaction with immunophilin-immunosuppressant complexes in the yeast Saccharomyces cerevisiae. J Biol Chem. 1995 Oct 20;270(42):24831–24838. doi: 10.1074/jbc.270.42.24831. [DOI] [PubMed] [Google Scholar]
  61. Zlatkine P., Mehul B., Magee A. I. Retargeting of cytosolic proteins to the plasma membrane by the Lck protein tyrosine kinase dual acylation motif. J Cell Sci. 1997 Mar;110(Pt 5):673–679. doi: 10.1242/jcs.110.5.673. [DOI] [PubMed] [Google Scholar]
  62. van der Spoel D., de Groot B. L., Hayward S., Berendsen H. J., Vogel H. J. Bending of the calmodulin central helix: a theoretical study. Protein Sci. 1996 Oct;5(10):2044–2053. doi: 10.1002/pro.5560051011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. van't Hof W., Resh M. D. Dual fatty acylation of p59(Fyn) is required for association with the T cell receptor zeta chain through phosphotyrosine-Src homology domain-2 interactions. J Cell Biol. 1999 Apr 19;145(2):377–389. doi: 10.1083/jcb.145.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES