Abstract
Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and electron microscopy (EM) have been used simultaneously to follow the temperature-induced formation of amyloid fibrils by bovine insulin at acidic pH. The FTIR and CD data confirm that, before heating, insulin molecules in solution at pH 2.3 have a predominantly native-like alpha-helical structure. On heating to 70 degrees C, partial unfolding occurs and results initially in aggregates that are shown by CD and FT-IR spectra to retain a predominantly helical structure. Following this step, changes in the CD and FTIR spectra occur that are indicative of the extensive conversion of the molecular conformation from alpha-helical to beta-sheet structure. At later stages, EM shows the development of fibrils with well-defined repetitive morphologies including structures with a periodic helical twist of approximately 450 A. The results indicate that formation of fibrils by insulin requires substantial unfolding of the native protein, and that the most highly ordered structures result from a slow evolution of the morphology of the initially formed fibrillar species.
Full Text
The Full Text of this article is available as a PDF (506.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arrondo J. L., Muga A., Castresana J., Goñi F. M. Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy. Prog Biophys Mol Biol. 1993;59(1):23–56. doi: 10.1016/0079-6107(93)90006-6. [DOI] [PubMed] [Google Scholar]
- Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. C., Mercola D. A., Vijayan M. Atomic positions in rhombohedral 2-zinc insulin crystals. Nature. 1971 Jun 25;231(5304):506–511. doi: 10.1038/231506a0. [DOI] [PubMed] [Google Scholar]
- Booth D. R., Sunde M., Bellotti V., Robinson C. V., Hutchinson W. L., Fraser P. E., Hawkins P. N., Dobson C. M., Radford S. E., Blake C. C. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature. 1997 Feb 27;385(6619):787–793. doi: 10.1038/385787a0. [DOI] [PubMed] [Google Scholar]
- Brange J., Andersen L., Laursen E. D., Meyn G., Rasmussen E. Toward understanding insulin fibrillation. J Pharm Sci. 1997 May;86(5):517–525. doi: 10.1021/js960297s. [DOI] [PubMed] [Google Scholar]
- Brange J., Dodson G. G., Edwards D. J., Holden P. H., Whittingham J. L. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin). Proteins. 1997 Apr;27(4):507–516. [PubMed] [Google Scholar]
- Brange J., Havelund S., Hougaard P. Chemical stability of insulin. 2. Formation of higher molecular weight transformation products during storage of pharmaceutical preparations. Pharm Res. 1992 Jun;9(6):727–734. doi: 10.1023/a:1015887001987. [DOI] [PubMed] [Google Scholar]
- Burke M. J., Rougvie M. A. Cross- protein structures. I. Insulin fibrils. Biochemistry. 1972 Jun 20;11(13):2435–2439. doi: 10.1021/bi00763a008. [DOI] [PubMed] [Google Scholar]
- Canet D., Sunde M., Last A. M., Miranker A., Spencer A., Robinson C. V., Dobson C. M. Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry. 1999 May 18;38(20):6419–6427. doi: 10.1021/bi983037t. [DOI] [PubMed] [Google Scholar]
- Chiti F., Webster P., Taddei N., Clark A., Stefani M., Ramponi G., Dobson C. M. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3590–3594. doi: 10.1073/pnas.96.7.3590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colon W., Kelly J. W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 1992 Sep 15;31(36):8654–8660. doi: 10.1021/bi00151a036. [DOI] [PubMed] [Google Scholar]
- Dobson C. M. Protein misfolding, evolution and disease. Trends Biochem Sci. 1999 Sep;24(9):329–332. doi: 10.1016/s0968-0004(99)01445-0. [DOI] [PubMed] [Google Scholar]
- Dodson G., Steiner D. The role of assembly in insulin's biosynthesis. Curr Opin Struct Biol. 1998 Apr;8(2):189–194. doi: 10.1016/s0959-440x(98)80037-7. [DOI] [PubMed] [Google Scholar]
- Dong A., Kendrick B., Kreilgârd L., Matsuura J., Manning M. C., Carpenter J. F. Spectroscopic study of secondary structure and thermal denaturation of recombinant human factor XIII in aqueous solution. Arch Biochem Biophys. 1997 Nov 15;347(2):213–220. doi: 10.1006/abbi.1997.0349. [DOI] [PubMed] [Google Scholar]
- Dong A., Matsuura J., Manning M. C., Carpenter J. F. Intermolecular beta-sheet results from trifluoroethanol-induced nonnative alpha-helical structure in beta-sheet predominant proteins: infrared and circular dichroism spectroscopic study. Arch Biochem Biophys. 1998 Jul 15;355(2):275–281. doi: 10.1006/abbi.1998.0718. [DOI] [PubMed] [Google Scholar]
- Gilchrist P. J., Bradshaw J. P. Amyloid formation by salmon calcitonin. Biochim Biophys Acta. 1993 Aug 4;1182(1):111–114. doi: 10.1016/0925-4439(93)90160-3. [DOI] [PubMed] [Google Scholar]
- Guijarro J. I., Sunde M., Jones J. A., Campbell I. D., Dobson C. M. Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4224–4228. doi: 10.1073/pnas.95.8.4224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halverson K., Fraser P. E., Kirschner D. A., Lansbury P. T., Jr Molecular determinants of amyloid deposition in Alzheimer's disease: conformational studies of synthetic beta-protein fragments. Biochemistry. 1990 Mar 20;29(11):2639–2644. doi: 10.1021/bi00463a003. [DOI] [PubMed] [Google Scholar]
- Harper J. D., Lansbury P. T., Jr Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem. 1997;66:385–407. doi: 10.1146/annurev.biochem.66.1.385. [DOI] [PubMed] [Google Scholar]
- Hua Q. X., Weiss M. A. Comparative 2D NMR studies of human insulin and des-pentapeptide insulin: sequential resonance assignment and implications for protein dynamics and receptor recognition. Biochemistry. 1991 Jun 4;30(22):5505–5515. doi: 10.1021/bi00236a025. [DOI] [PubMed] [Google Scholar]
- Jarrett J. T., Lansbury P. T., Jr Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell. 1993 Jun 18;73(6):1055–1058. doi: 10.1016/0092-8674(93)90635-4. [DOI] [PubMed] [Google Scholar]
- Jiménez J. L., Guijarro J. I., Orlova E., Zurdo J., Dobson C. M., Sunde M., Saibil H. R. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 1999 Feb 15;18(4):815–821. doi: 10.1093/emboj/18.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly J. W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol. 1998 Feb;8(1):101–106. doi: 10.1016/s0959-440x(98)80016-x. [DOI] [PubMed] [Google Scholar]
- Kendrick B. S., Cleland J. L., Lam X., Nguyen T., Randolph T. W., Manning M. C., Carpenter J. F. Aggregation of recombinant human interferon gamma: kinetics and structural transitions. J Pharm Sci. 1998 Sep;87(9):1069–1076. doi: 10.1021/js9801384. [DOI] [PubMed] [Google Scholar]
- Kirschner D. A., Elliott-Bryant R., Szumowski K. E., Gonnerman W. A., Kindy M. S., Sipe J. D., Cathcart E. S. In vitro amyloid fibril formation by synthetic peptides corresponding to the amino terminus of apoSAA isoforms from amyloid-susceptible and amyloid-resistant mice. J Struct Biol. 1998 Dec 1;124(1):88–98. doi: 10.1006/jsbi.1998.4047. [DOI] [PubMed] [Google Scholar]
- Kirschner D. A., Inouye H., Duffy L. K., Sinclair A., Lind M., Selkoe D. J. Synthetic peptide homologous to beta protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6953–6957. doi: 10.1073/pnas.84.19.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
- Lai Z., Colón W., Kelly J. W. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry. 1996 May 21;35(20):6470–6482. doi: 10.1021/bi952501g. [DOI] [PubMed] [Google Scholar]
- Nettleton E. J., Sunde M., Lai Z., Kelly J. W., Dobson C. M., Robinson C. V. Protein subunit interactions and structural integrity of amyloidogenic transthyretins: evidence from electrospray mass spectrometry. J Mol Biol. 1998 Aug 21;281(3):553–564. doi: 10.1006/jmbi.1998.1937. [DOI] [PubMed] [Google Scholar]
- Nettleton E. J., Tito P., Sunde M., Bouchard M., Dobson C. M., Robinson C. V. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry. Biophys J. 2000 Aug;79(2):1053–1065. doi: 10.1016/S0006-3495(00)76359-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seilheimer B., Bohrmann B., Bondolfi L., Müller F., Stüber D., Döbeli H. The toxicity of the Alzheimer's beta-amyloid peptide correlates with a distinct fiber morphology. J Struct Biol. 1997 Jun;119(1):59–71. doi: 10.1006/jsbi.1997.3859. [DOI] [PubMed] [Google Scholar]
- Serpell L. C., Fraser P. E., Sunde M. X-ray fiber diffraction of amyloid fibrils. Methods Enzymol. 1999;309:526–536. doi: 10.1016/s0076-6879(99)09036-9. [DOI] [PubMed] [Google Scholar]
- Sipe J. D. Amyloidosis. Crit Rev Clin Lab Sci. 1994;31(4):325–354. doi: 10.3109/10408369409084679. [DOI] [PubMed] [Google Scholar]
- Sipe J. D. Amyloidosis. Annu Rev Biochem. 1992;61:947–975. doi: 10.1146/annurev.bi.61.070192.004503. [DOI] [PubMed] [Google Scholar]
- Sunde M., Blake C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem. 1997;50:123–159. doi: 10.1016/s0065-3233(08)60320-4. [DOI] [PubMed] [Google Scholar]
- Sunde M., Serpell L. C., Bartlam M., Fraser P. E., Pepys M. B., Blake C. C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997 Oct 31;273(3):729–739. doi: 10.1006/jmbi.1997.1348. [DOI] [PubMed] [Google Scholar]
- Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
- Tan S. Y., Pepys M. B. Amyloidosis. Histopathology. 1994 Nov;25(5):403–414. doi: 10.1111/j.1365-2559.1994.tb00001.x. [DOI] [PubMed] [Google Scholar]
- Taubes G. Misfolding the way to disease. Science. 1996 Mar 15;271(5255):1493–1495. doi: 10.1126/science.271.5255.1493. [DOI] [PubMed] [Google Scholar]
- Turnell W. G., Finch J. T. Binding of the dye congo red to the amyloid protein pig insulin reveals a novel homology amongst amyloid-forming peptide sequences. J Mol Biol. 1992 Oct 20;227(4):1205–1223. doi: 10.1016/0022-2836(92)90532-o. [DOI] [PubMed] [Google Scholar]
- Vecchio G., Bossi A., Pasta P., Carrea G. Fourier-transform infrared conformational study of bovine insulin in surfactant solutions. Int J Pept Protein Res. 1996 Aug;48(2):113–117. doi: 10.1111/j.1399-3011.1996.tb00820.x. [DOI] [PubMed] [Google Scholar]
- Villegas V., Zurdo J., Filimonov V. V., Avilés F. X., Dobson C. M., Serrano L. Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein Sci. 2000 Sep;9(9):1700–1708. doi: 10.1110/ps.9.9.1700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu N. T., Jo B. H., Chang R. C., Huber J. D. Single-crystal Raman spectra of native insulin. Structures of insulin fibrils, glucagon fibrils, and intact calf lens. Arch Biochem Biophys. 1974 Feb;160(2):614–622. doi: 10.1016/0003-9861(74)90438-x. [DOI] [PubMed] [Google Scholar]