Abstract
By using a novel consensus approach, we have previously managed to generate a fully synthetic phytase, consensus phytase-1, that was 15-26 degrees C more thermostable than the parent fungal phytases used in its design (Lehmann et al., 2000). We now sought to use the backbone of consensus phytase-1 and to modify its catalytic properties. This was done by replacing a considerable part of the active site (i.e., all the divergent residues) with the corresponding residues of Aspergillus niger NRRL 3135 phytase, which displays pronounced differences in specific activity, substrate specificity, and pH-activity profile. For the new protein termed consensus phytase-7, a major - although not complete - shift in catalytic properties was observed, demonstrating that rational transfer of favorable catalytic properties from one phytase to another is possible by using this approach. Although the exchange of the active site was associated with a 7.6 degrees C decrease in unfolding temperature (Tm) as measured by differential scanning calorimetry, consensus phytase-7 still was >7 degrees C more thermostable than all wild-type ascomycete phytases known to date. Thus, combination of the consensus approach with the selection of a "preferred" active site allows the design of a thermostabilized variant of an enzyme family of interest that (most closely) matches the most favorable catalytic properties found among its family members.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cannon C. P. Improved management of unstable angina and non-Q-wave MI. Contemp Intern Med. 1995 May;7(5):11-2, 15-6, 19-24. [PubMed] [Google Scholar]
- Crameri A., Raillard S. A., Bermudez E., Stemmer W. P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature. 1998 Jan 15;391(6664):288–291. doi: 10.1038/34663. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gellissen G., Janowicz Z. A., Merckelbach A., Piontek M., Keup P., Weydemann U., Hollenberg C. P., Strasser A. W. Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology (N Y) 1991 Mar;9(3):291–295. doi: 10.1038/nbt0391-291. [DOI] [PubMed] [Google Scholar]
- Gellissen G., Piontek M., Dahlems U., Jenzelewski V., Gavagan J. E., DiCosimo R., Anton D. L., Janowicz Z. A. Recombinant Hansenula polymorpha as a biocatalyst: coexpression of the spinach glycolate oxidase (GO) and the S. cerevisiae catalase T (CTT1) gene. Appl Microbiol Biotechnol. 1996 Aug;46(1):46–54. doi: 10.1007/s002530050781. [DOI] [PubMed] [Google Scholar]
- Harford-Cross C. F., Carmichael A. B., Allan F. K., England P. A., Rouch D. A., Wong L. L. Protein engineering of cytochrome p450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Protein Eng. 2000 Feb;13(2):121–128. doi: 10.1093/protein/13.2.121. [DOI] [PubMed] [Google Scholar]
- Hayashi H., Kuramitsu S., Inoue Y., Morino Y., Kagamiyama H. [Arg292----Val] or [Arg292----Leu] mutation enhances the reactivity of Escherichia coli aspartate aminotransferase with aromatic amino acids. Biochem Biophys Res Commun. 1989 Feb 28;159(1):337–342. doi: 10.1016/0006-291x(89)92443-1. [DOI] [PubMed] [Google Scholar]
- Kostrewa D., Grüninger-Leitch F., D'Arcy A., Broger C., Mitchell D., van Loon A. P. Crystal structure of phytase from Aspergillus ficuum at 2.5 A resolution. Nat Struct Biol. 1997 Mar;4(3):185–190. doi: 10.1038/nsb0397-185. [DOI] [PubMed] [Google Scholar]
- Kuchner O., Arnold F. H. Directed evolution of enzyme catalysts. Trends Biotechnol. 1997 Dec;15(12):523–530. doi: 10.1016/S0167-7799(97)01138-4. [DOI] [PubMed] [Google Scholar]
- Lehmann M., Kostrewa D., Wyss M., Brugger R., D'Arcy A., Pasamontes L., van Loon A. P. From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 2000 Jan;13(1):49–57. doi: 10.1093/protein/13.1.49. [DOI] [PubMed] [Google Scholar]
- Lim D., Golovan S., Forsberg C. W., Jia Z. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol. 2000 Feb;7(2):108–113. doi: 10.1038/72371. [DOI] [PubMed] [Google Scholar]
- Mayer A. F., Hellmuth K., Schlieker H., Lopez-Ulibarri R., Oertel S., Dahlems U., Strasser A. W., van Loon A. P. An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng. 1999 May 5;63(3):373–381. doi: 10.1002/(sici)1097-0290(19990505)63:3<373::aid-bit14>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
- Mitchell D. B., Vogel K., Weimann B. J., Pasamontes L., van Loon A. P. The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology. 1997 Jan;143(Pt 1):245–252. doi: 10.1099/00221287-143-1-245. [DOI] [PubMed] [Google Scholar]
- Ness J. E., Welch M., Giver L., Bueno M., Cherry J. R., Borchert T. V., Stemmer W. P., Minshull J. DNA shuffling of subgenomic sequences of subtilisin. Nat Biotechnol. 1999 Sep;17(9):893–896. doi: 10.1038/12884. [DOI] [PubMed] [Google Scholar]
- Piddington C. S., Houston C. S., Paloheimo M., Cantrell M., Miettinen-Oinonen A., Nevalainen H., Rambosek J. The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene. 1993 Oct 29;133(1):55–62. doi: 10.1016/0378-1119(93)90224-q. [DOI] [PubMed] [Google Scholar]
- Purvis I. J., Bettany A. J., Santiago T. C., Coggins J. R., Duncan K., Eason R., Brown A. J. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol. 1987 Jan 20;193(2):413–417. doi: 10.1016/0022-2836(87)90230-0. [DOI] [PubMed] [Google Scholar]
- Sandberg A. S., Hulthén L. R., Türk M. Dietary Aspergillus niger phytase increases iron absorption in humans. J Nutr. 1996 Feb;126(2):476–480. doi: 10.1093/jn/126.2.476. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao Z., Zhao H., Giver L., Arnold F. H. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res. 1998 Jan 15;26(2):681–683. doi: 10.1093/nar/26.2.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmer W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747–10751. doi: 10.1073/pnas.91.22.10747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
- Tomschy A., Wyss M., Kostrewa D., Vogel K., Tessier M., Höfer S., Bürgin H., Kronenberger A., Rémy R., van Loon A. P. Active site residue 297 of Aspergillus niger phytase critically affects the catalytic properties. FEBS Lett. 2000 Apr 28;472(2-3):169–172. doi: 10.1016/s0014-5793(00)01456-3. [DOI] [PubMed] [Google Scholar]
- Ullah A. H., Gibson D. M. Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem. 1987;17(1):63–91. doi: 10.1080/00327488708062477. [DOI] [PubMed] [Google Scholar]
- Wilks H. M., Hart K. W., Feeney R., Dunn C. R., Muirhead H., Chia W. N., Barstow D. A., Atkinson T., Clarke A. R., Holbrook J. J. A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science. 1988 Dec 16;242(4885):1541–1544. doi: 10.1126/science.3201242. [DOI] [PubMed] [Google Scholar]
- Wodzinski R. J., Ullah A. H. Phytase. Adv Appl Microbiol. 1996;42:263–302. doi: 10.1016/s0065-2164(08)70375-7. [DOI] [PubMed] [Google Scholar]
- Wyss M., Brugger R., Kronenberger A., Rémy R., Fimbel R., Oesterhelt G., Lehmann M., van Loon A. P. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol. 1999 Feb;65(2):367–373. doi: 10.1128/aem.65.2.367-373.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyss M., Pasamontes L., Friedlein A., Rémy R., Tessier M., Kronenberger A., Middendorf A., Lehmann M., Schnoebelen L., Röthlisberger U. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol. 1999 Feb;65(2):359–366. doi: 10.1128/aem.65.2.359-366.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J. H., Dawes G., Stemmer W. P. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4504–4509. doi: 10.1073/pnas.94.9.4504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao H., Giver L., Shao Z., Affholter J. A., Arnold F. H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol. 1998 Mar;16(3):258–261. doi: 10.1038/nbt0398-258. [DOI] [PubMed] [Google Scholar]
- van Hartingsveldt W., van Zeijl C. M., Harteveld G. M., Gouka R. J., Suykerbuyk M. E., Luiten R. G., van Paridon P. A., Selten G. C., Veenstra A. E., van Gorcom R. F. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene. 1993 May 15;127(1):87–94. doi: 10.1016/0378-1119(93)90620-i. [DOI] [PubMed] [Google Scholar]