Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Oct;9(10):1898–1904. doi: 10.1110/ps.9.10.1898

Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance.

L Hong 1, X C Zhang 1, J A Hartsuck 1, J Tang 1
PMCID: PMC2144469  PMID: 11106162

Abstract

Saquinavir is a widely used HIV-1 protease inhibitor drug for AIDS therapy. Its effectiveness, however, has been hindered by the emergence of resistant mutations, a common problem for inhibitor drugs that target HIV-1 viral enzymes. Three HIV-1 protease mutant species, G48V, L90M, and G48V/L90M double mutant, are associated in vivo with saquinavir resistance by the enzyme (Jacobsen et al., 1996). Kinetic studies on these mutants demonstrate a 13.5-, 3-, and 419-fold increase in Ki values, respectively, compared to the wild-type enzyme (Ermolieff J, Lin X, Tang J, 1997, Biochemistry 36:12364-12370). To gain an understanding of how these mutations modulate inhibitor binding, we have solved the HIV-1 protease crystal structure of the G48V/L90M double mutant in complex with saquinavir at 2.6 A resolution. This mutant complex is compared with that of the wild-type enzyme bound to the same inhibitor (Krohn A, Redshaw S, Richie JC, Graves BJ, Hatada MH, 1991, J Med Chem 34:3340-3342). Our analysis shows that to accommodate a valine side chain at position 48, the inhibitor moves away from the protease, resulting in the formation of larger gaps between the inhibitor P3 subsite and the flap region of the enzyme. Other subsites also demonstrate reduced inhibitor interaction due to an overall change of inhibitor conformation. The new methionine side chain at position 90 has van der Waals interactions with main-chain atoms of the active site residues resulting in a decrease in the volume and the structural flexibility of S1/S1' substrate binding pockets. Indirect interactions between the mutant methionine side chain and the substrate scissile bond or the isostere part of the inhibitor may differ from those of the wild-type enzyme and therefore may facilitate catalysis by the resistant mutant.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ala P. J., Huston E. E., Klabe R. M., McCabe D. D., Duke J. L., Rizzo C. J., Korant B. D., DeLoskey R. J., Lam P. Y., Hodge C. N. Molecular basis of HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with cyclic urea inhibitors. Biochemistry. 1997 Feb 18;36(7):1573–1580. doi: 10.1021/bi962234u. [DOI] [PubMed] [Google Scholar]
  2. Baldwin E. T., Bhat T. N., Liu B., Pattabiraman N., Erickson J. W. Structural basis of drug resistance for the V82A mutant of HIV-1 proteinase. Nat Struct Biol. 1995 Mar;2(3):244–249. doi: 10.1038/nsb0395-244. [DOI] [PubMed] [Google Scholar]
  3. Chen Z., Li Y., Schock H. B., Hall D., Chen E., Kuo L. C. Three-dimensional structure of a mutant HIV-1 protease displaying cross-resistance to all protease inhibitors in clinical trials. J Biol Chem. 1995 Sep 15;270(37):21433–21436. doi: 10.1074/jbc.270.37.21433. [DOI] [PubMed] [Google Scholar]
  4. Debouck C., Gorniak J. G., Strickler J. E., Meek T. D., Metcalf B. W., Rosenberg M. Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8903–8906. doi: 10.1073/pnas.84.24.8903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eberle J., Bechowsky B., Rose D., Hauser U., von der Helm K., Gürtler L., Nitschko H. Resistance of HIV type 1 to proteinase inhibitor Ro 31-8959. AIDS Res Hum Retroviruses. 1995 Jun;11(6):671–676. doi: 10.1089/aid.1995.11.671. [DOI] [PubMed] [Google Scholar]
  6. Ermolieff J., Lin X., Tang J. Kinetic properties of saquinavir-resistant mutants of human immunodeficiency virus type 1 protease and their implications in drug resistance in vivo. Biochemistry. 1997 Oct 7;36(40):12364–12370. doi: 10.1021/bi971072e. [DOI] [PubMed] [Google Scholar]
  7. Graves M. C., Lim J. J., Heimer E. P., Kramer R. A. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2449–2453. doi: 10.1073/pnas.85.8.2449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hong L., Treharne A., Hartsuck J. A., Foundling S., Tang J. Crystal structures of complexes of a peptidic inhibitor with wild-type and two mutant HIV-1 proteases. Biochemistry. 1996 Aug 20;35(33):10627–10633. doi: 10.1021/bi960481s. [DOI] [PubMed] [Google Scholar]
  9. Hoog S. S., Towler E. M., Zhao B., Doyle M. L., Debouck C., Abdel-Meguid S. S. Human immunodeficiency virus protease ligand specificity conferred by residues outside of the active site cavity. Biochemistry. 1996 Aug 13;35(32):10279–10286. doi: 10.1021/bi960179j. [DOI] [PubMed] [Google Scholar]
  10. Ido E., Han H. P., Kezdy F. J., Tang J. Kinetic studies of human immunodeficiency virus type 1 protease and its active-site hydrogen bond mutant A28S. J Biol Chem. 1991 Dec 25;266(36):24359–24366. [PubMed] [Google Scholar]
  11. Jacobsen H., Hänggi M., Ott M., Duncan I. B., Owen S., Andreoni M., Vella S., Mous J. In vivo resistance to a human immunodeficiency virus type 1 proteinase inhibitor: mutations, kinetics, and frequencies. J Infect Dis. 1996 Jun;173(6):1379–1387. doi: 10.1093/infdis/173.6.1379. [DOI] [PubMed] [Google Scholar]
  12. Jacobsen H., Yasargil K., Winslow D. L., Craig J. C., Kröhn A., Duncan I. B., Mous J. Characterization of human immunodeficiency virus type 1 mutants with decreased sensitivity to proteinase inhibitor Ro 31-8959. Virology. 1995 Jan 10;206(1):527–534. doi: 10.1016/s0042-6822(95)80069-7. [DOI] [PubMed] [Google Scholar]
  13. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  14. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Krohn A., Redshaw S., Ritchie J. C., Graves B. J., Hatada M. H. Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere. J Med Chem. 1991 Nov;34(11):3340–3342. doi: 10.1021/jm00115a028. [DOI] [PubMed] [Google Scholar]
  16. Lapatto R., Blundell T., Hemmings A., Overington J., Wilderspin A., Wood S., Merson J. R., Whittle P. J., Danley D. E., Geoghegan K. F. X-ray analysis of HIV-1 proteinase at 2.7 A resolution confirms structural homology among retroviral enzymes. Nature. 1989 Nov 16;342(6247):299–302. doi: 10.1038/342299a0. [DOI] [PubMed] [Google Scholar]
  17. Laskowski R. A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995 Oct;13(5):323-30, 307-8. doi: 10.1016/0263-7855(95)00073-9. [DOI] [PubMed] [Google Scholar]
  18. Lin Y., Lin X., Hong L., Foundling S., Heinrikson R. L., Thaisrivongs S., Leelamanit W., Raterman D., Shah M., Dunn B. M. Effect of point mutations on the kinetics and the inhibition of human immunodeficiency virus type 1 protease: relationship to drug resistance. Biochemistry. 1995 Jan 31;34(4):1143–1152. doi: 10.1021/bi00004a007. [DOI] [PubMed] [Google Scholar]
  19. Maschera B., Darby G., Palú G., Wright L. L., Tisdale M., Myers R., Blair E. D., Furfine E. S. Human immunodeficiency virus. Mutations in the viral protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. J Biol Chem. 1996 Dec 27;271(52):33231–33235. doi: 10.1074/jbc.271.52.33231. [DOI] [PubMed] [Google Scholar]
  20. Priestle J. P., Fässler A., Rösel J., Tintelnot-Blomley M., Strop P., Grütter M. G. Comparative analysis of the X-ray structures of HIV-1 and HIV-2 proteases in complex with CGP 53820, a novel pseudosymmetric inhibitor. Structure. 1995 Apr 15;3(4):381–389. doi: 10.1016/s0969-2126(01)00169-1. [DOI] [PubMed] [Google Scholar]
  21. Seelmeier S., Schmidt H., Turk V., von der Helm K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6612–6616. doi: 10.1073/pnas.85.18.6612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swairjo M. A., Towler E. M., Debouck C., Abdel-Meguid S. S. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease. Biochemistry. 1998 Aug 4;37(31):10928–10936. doi: 10.1021/bi980784h. [DOI] [PubMed] [Google Scholar]
  23. Towler E. M., Thompson S. K., Tomaszek T., Debouck C. Identification of a loop outside the active site cavity of the human immunodeficiency virus proteases which confers inhibitor specificity. Biochemistry. 1997 Apr 29;36(17):5128–5133. doi: 10.1021/bi962729j. [DOI] [PubMed] [Google Scholar]
  24. Wlodawer A., Erickson J. W. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem. 1993;62:543–585. doi: 10.1146/annurev.bi.62.070193.002551. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES