Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Oct;9(10):1922–1929. doi: 10.1110/ps.9.10.1922

Lipoylating and biotinylating enzymes contain a homologous catalytic module.

P A Reche 1
PMCID: PMC2144473  PMID: 11106165

Abstract

Biotin and lipoic acid moieties are the covalently attached coenzyme cofactors of several multicomponent enzyme complexes that catalyze key metabolic reactions. Attachment of these moieties to the biotinyl- and lipoyl-dependent enzymes is post-translationally catalyzed by specific biotinylating and lipoylating protein enzymes. In Escherichia coli, two different enzymes, LplA and LipB, catalyze independent pathways for the lipoylation of the relevant enzymes, whereas only one enzyme, the BirA protein, is responsible for all the biotinylation. Counterparts of the E. coli BirA, LplA, and LipB enzymes have been previously identified in many organisms, but homology among the three families has never been reported. Computational analysis based on PSI-BLAST profiles and secondary structure predictions indicates, however, that lipoylating and biotinylating enzymes are evolutionarily related protein families containing a homologous catalytic module. Sequence conservation among the three families is very poor, but a single lysine residue is strictly conserved in all of them, which, according to the available X-ray crystal structure of the E. coli BirA protein, is expected to contribute to the binding of lipoic acid in the LplA and LipB enzymes.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Artymiuk P. J., Rice D. W., Poirrette A. R., Willet P. A tale of two synthetases. Nat Struct Biol. 1994 Nov;1(11):758–760. doi: 10.1038/nsb1194-758. [DOI] [PubMed] [Google Scholar]
  3. Barker D. F., Campbell A. M. Genetic and biochemical characterization of the birA gene and its product: evidence for a direct role of biotin holoenzyme synthetase in repression of the biotin operon in Escherichia coli. J Mol Biol. 1981 Mar 15;146(4):469–492. doi: 10.1016/0022-2836(81)90043-7. [DOI] [PubMed] [Google Scholar]
  4. Buoncristiani M. R., Howard P. K., Otsuka A. J. DNA-binding and enzymatic domains of the bifunctional biotin operon repressor (BirA) of Escherichia coli. Gene. 1986;44(2-3):255–261. doi: 10.1016/0378-1119(86)90189-7. [DOI] [PubMed] [Google Scholar]
  5. Chapman-Smith A., Cronan J. E., Jr The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem Sci. 1999 Sep;24(9):359–363. doi: 10.1016/s0968-0004(99)01438-3. [DOI] [PubMed] [Google Scholar]
  6. Cronan J. E., Jr The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell. 1989 Aug 11;58(3):427–429. doi: 10.1016/0092-8674(89)90421-2. [DOI] [PubMed] [Google Scholar]
  7. Cusack S., Berthet-Colominas C., Härtlein M., Nassar N., Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature. 1990 Sep 20;347(6290):249–255. doi: 10.1038/347249a0. [DOI] [PubMed] [Google Scholar]
  8. Cusack S. Sequence, structure and evolutionary relationships between class 2 aminoacyl-tRNA synthetases: an update. Biochimie. 1993;75(12):1077–1081. doi: 10.1016/0300-9084(93)90006-e. [DOI] [PubMed] [Google Scholar]
  9. Firestine S. M., Nixon A. E., Benkovic S. J. Threading your way to protein function. Chem Biol. 1996 Oct;3(10):779–783. doi: 10.1016/s1074-5521(96)90061-7. [DOI] [PubMed] [Google Scholar]
  10. Fujiwara K., Okamura-Ikeda K., Motokawa Y. Cloning and expression of a cDNA encoding bovine lipoyltransferase. J Biol Chem. 1997 Dec 19;272(51):31974–31978. doi: 10.1074/jbc.272.51.31974. [DOI] [PubMed] [Google Scholar]
  11. Fujiwara K., Okamura-Ikeda K., Motokawa Y. Purification and characterization of lipoyl-AMP:N epsilon-lysine lipoyltransferase from bovine liver mitochondria. J Biol Chem. 1994 Jun 17;269(24):16605–16609. [PubMed] [Google Scholar]
  12. Fujiwara K., Suzuki M., Okumachi Y., Okamura-Ikeda K., Fujiwara T., Takahashi E., Motokawa Y. Molecular cloning, structural characterization and chromosomal localization of human lipoyltransferase gene. Eur J Biochem. 1999 Mar;260(3):761–767. doi: 10.1046/j.1432-1327.1999.00204.x. [DOI] [PubMed] [Google Scholar]
  13. Green N. M. Avidin. Adv Protein Chem. 1975;29:85–133. doi: 10.1016/s0065-3233(08)60411-8. [DOI] [PubMed] [Google Scholar]
  14. Harmon F. R. Purification of antibodies against biotin of lipoic acid-Sepharose. Anal Biochem. 1980 Mar 15;103(1):58–63. doi: 10.1016/0003-2697(80)90236-5. [DOI] [PubMed] [Google Scholar]
  15. Holm L., Sander C. Mapping the protein universe. Science. 1996 Aug 2;273(5275):595–603. doi: 10.1126/science.273.5275.595. [DOI] [PubMed] [Google Scholar]
  16. Holm L. Unification of protein families. Curr Opin Struct Biol. 1998 Jun;8(3):372–379. doi: 10.1016/s0959-440x(98)80072-9. [DOI] [PubMed] [Google Scholar]
  17. Hughey R., Krogh A. Hidden Markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci. 1996 Apr;12(2):95–107. doi: 10.1093/bioinformatics/12.2.95. [DOI] [PubMed] [Google Scholar]
  18. Jordan S. W., Cronan J. E., Jr A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J Biol Chem. 1997 Jul 18;272(29):17903–17906. doi: 10.1074/jbc.272.29.17903. [DOI] [PubMed] [Google Scholar]
  19. Knowles J. R. The mechanism of biotin-dependent enzymes. Annu Rev Biochem. 1989;58:195–221. doi: 10.1146/annurev.bi.58.070189.001211. [DOI] [PubMed] [Google Scholar]
  20. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  21. Morris T. W., Reed K. E., Cronan J. E., Jr Identification of the gene encoding lipoate-protein ligase A of Escherichia coli. Molecular cloning and characterization of the lplA gene and gene product. J Biol Chem. 1994 Jun 10;269(23):16091–16100. [PubMed] [Google Scholar]
  22. Morris T. W., Reed K. E., Cronan J. E., Jr Lipoic acid metabolism in Escherichia coli: the lplA and lipB genes define redundant pathways for ligation of lipoyl groups to apoprotein. J Bacteriol. 1995 Jan;177(1):1–10. doi: 10.1128/jb.177.1.1-10.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakatsu T., Kato H., Oda J. Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase. Nat Struct Biol. 1998 Jan;5(1):15–19. doi: 10.1038/nsb0198-15. [DOI] [PubMed] [Google Scholar]
  24. Park J., Teichmann S. A., Hubbard T., Chothia C. Intermediate sequences increase the detection of homology between sequences. J Mol Biol. 1997 Oct 17;273(1):349–354. doi: 10.1006/jmbi.1997.1288. [DOI] [PubMed] [Google Scholar]
  25. Perham R. N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991 Sep 3;30(35):8501–8512. doi: 10.1021/bi00099a001. [DOI] [PubMed] [Google Scholar]
  26. Perham R. N., Reche P. A. Swinging arms in multifunctional enzymes and the specificity of post-translational modification. Biochem Soc Trans. 1998 Aug;26(3):299–303. doi: 10.1042/bst0260299. [DOI] [PubMed] [Google Scholar]
  27. Reche P., Perham R. N. Structure and selectivity in post-translational modification: attaching the biotinyl-lysine and lipoyl-lysine swinging arms in multifunctional enzymes. EMBO J. 1999 May 17;18(10):2673–2682. doi: 10.1093/emboj/18.10.2673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Richards N. G., Schuster S. M. Mechanistic issues in asparagine synthetase catalysis. Adv Enzymol Relat Areas Mol Biol. 1998;72:145–198. doi: 10.1002/9780470123188.ch5. [DOI] [PubMed] [Google Scholar]
  29. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  30. Tsunoda J. N., Yasunobu K. T. Mammalian lipoic acid activating enzyme. Arch Biochem Biophys. 1967 Feb;118(2):395–401. doi: 10.1016/0003-9861(67)90366-9. [DOI] [PubMed] [Google Scholar]
  31. Westhead D. R., Slidel T. W., Flores T. P., Thornton J. M. Protein structural topology: Automated analysis and diagrammatic representation. Protein Sci. 1999 Apr;8(4):897–904. doi: 10.1110/ps.8.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson K. P., Shewchuk L. M., Brennan R. G., Otsuka A. J., Matthews B. W. Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9257–9261. doi: 10.1073/pnas.89.19.9257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wood H. G., Harmon F. R., Wühr B., Hübner K., Lynen F. Comparison of the biotination of apotranscarboxylase and its aposubunits. Is assembly essential for biotination? J Biol Chem. 1980 Aug 10;255(15):7397–7409. [PubMed] [Google Scholar]
  34. Yamamoto K., Sekine T. Effect of avidin binding to SH1 on the interface between subfragment-1 and F-actin. J Biochem. 1987 Feb;101(2):519–523. doi: 10.1093/oxfordjournals.jbchem.a121939. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES