Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Oct;9(10):1935–1946.

Constraint-based assembly of tertiary protein structures from secondary structure elements.

K Yue 1, K A Dill 1
PMCID: PMC2144474  PMID: 11106167

Abstract

A challenge in computational protein folding is to assemble secondary structure elements-helices and strands-into well-packed tertiary structures. Particularly difficult is the formation of beta-sheets from strands, because they involve large conformational searches at the same time as precise packing and hydrogen bonding. Here we describe a method, called Geocore-2, that (1) grows chains one monomer or secondary structure at a time, then (2) disconnects the loops and performs a fast rigid-body docking step to achieve canonical packings, then (3) in the case of intrasheet strand packing, adjusts the side-chain rotamers; and finally (4) reattaches loops. Computational efficiency is enhanced by using a branch-and-bound search in which pruning rules aim to achieve a hydrophobic core and satisfactory hydrogen bonding patterns. We show that the pruning rules reduce computational time by 10(3)- to 10(5)-fold, and that this strategy is computationally practical at least for molecules up to about 100 amino acids long.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates P. A., Jackson R. M., Sternberg M. J. Model building by comparison: a combination of expert knowledge and computer automation. Proteins. 1997;Suppl 1:59–67. doi: 10.1002/(sici)1097-0134(1997)1+<59::aid-prot9>3.3.co;2-k. [DOI] [PubMed] [Google Scholar]
  2. Bowie J. U. Helix packing angle preferences. Nat Struct Biol. 1997 Nov;4(11):915–917. doi: 10.1038/nsb1197-915. [DOI] [PubMed] [Google Scholar]
  3. Chothia C. Coiling of beta-pleated sheets. J Mol Biol. 1983 Jan 5;163(1):107–117. doi: 10.1016/0022-2836(83)90031-1. [DOI] [PubMed] [Google Scholar]
  4. Chothia C., Finkelstein A. V. The classification and origins of protein folding patterns. Annu Rev Biochem. 1990;59:1007–1039. doi: 10.1146/annurev.bi.59.070190.005043. [DOI] [PubMed] [Google Scholar]
  5. Chothia C., Janin J. Relative orientation of close-packed beta-pleated sheets in proteins. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4146–4150. doi: 10.1073/pnas.78.7.4146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chothia C. Principles that determine the structure of proteins. Annu Rev Biochem. 1984;53:537–572. doi: 10.1146/annurev.bi.53.070184.002541. [DOI] [PubMed] [Google Scholar]
  7. Cohen F. E., Sternberg M. J., Taylor W. R. Analysis of the tertiary structure of protein beta-sheet sandwiches. J Mol Biol. 1981 May 25;148(3):253–272. doi: 10.1016/0022-2836(81)90538-6. [DOI] [PubMed] [Google Scholar]
  8. Dill K. A., Chan H. S. From Levinthal to pathways to funnels. Nat Struct Biol. 1997 Jan;4(1):10–19. doi: 10.1038/nsb0197-10. [DOI] [PubMed] [Google Scholar]
  9. Edwards M. S., Sternberg J. E., Thornton J. M. Structural and sequence patterns in the loops of beta alpha beta units. Protein Eng. 1987 Jun;1(3):173–181. doi: 10.1093/protein/1.3.173. [DOI] [PubMed] [Google Scholar]
  10. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  11. Harris N. L., Presnell S. R., Cohen F. E. Four helix bundle diversity in globular proteins. J Mol Biol. 1994 Mar 11;236(5):1356–1368. doi: 10.1016/0022-2836(94)90063-9. [DOI] [PubMed] [Google Scholar]
  12. Hutchinson E. G., Sessions R. B., Thornton J. M., Woolfson D. N. Determinants of strand register in antiparallel beta-sheets of proteins. Protein Sci. 1998 Nov;7(11):2287–2300. doi: 10.1002/pro.5560071106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ishikawa K., Yue K., Dill K. A. Predicting the structures of 18 peptides using Geocore. Protein Sci. 1999 Apr;8(4):716–721. doi: 10.1110/ps.8.4.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Janin J., Chothia C. Packing of alpha-helices onto beta-pleated sheets and the anatomy of alpha/beta proteins. J Mol Biol. 1980 Oct 15;143(1):95–128. doi: 10.1016/0022-2836(80)90126-6. [DOI] [PubMed] [Google Scholar]
  15. Kurochkina N., Privalov G. Heterogeneity of packing: structural approach. Protein Sci. 1998 Apr;7(4):897–905. doi: 10.1002/pro.5560070407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lesk A. M., Brändén C. I., Chothia C. Structural principles of alpha/beta barrel proteins: the packing of the interior of the sheet. Proteins. 1989;5(2):139–148. doi: 10.1002/prot.340050208. [DOI] [PubMed] [Google Scholar]
  17. Michie A. D., Orengo C. A., Thornton J. M. Analysis of domain structural class using an automated class assignment protocol. J Mol Biol. 1996 Sep 20;262(2):168–185. doi: 10.1006/jmbi.1996.0506. [DOI] [PubMed] [Google Scholar]
  18. Ortiz A. R., Kolinski A., Skolnick J. Nativelike topology assembly of small proteins using predicted restraints in Monte Carlo folding simulations. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1020–1025. doi: 10.1073/pnas.95.3.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reddy B. V., Blundell T. L. Packing of secondary structural elements in proteins. Analysis and prediction of inter-helix distances. J Mol Biol. 1993 Oct 5;233(3):464–479. doi: 10.1006/jmbi.1993.1524. [DOI] [PubMed] [Google Scholar]
  20. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  21. Roseman M. A. Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J Mol Biol. 1988 Apr 5;200(3):513–522. doi: 10.1016/0022-2836(88)90540-2. [DOI] [PubMed] [Google Scholar]
  22. Simons K. T., Kooperberg C., Huang E., Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997 Apr 25;268(1):209–225. doi: 10.1006/jmbi.1997.0959. [DOI] [PubMed] [Google Scholar]
  23. Sklenar H., Etchebest C., Lavery R. Describing protein structure: a general algorithm yielding complete helicoidal parameters and a unique overall axis. Proteins. 1989;6(1):46–60. doi: 10.1002/prot.340060105. [DOI] [PubMed] [Google Scholar]
  24. Srinivasan R., Rose G. D. LINUS: a hierarchic procedure to predict the fold of a protein. Proteins. 1995 Jun;22(2):81–99. doi: 10.1002/prot.340220202. [DOI] [PubMed] [Google Scholar]
  25. Yue K., Dill K. A. Folding proteins with a simple energy function and extensive conformational searching. Protein Sci. 1996 Feb;5(2):254–261. doi: 10.1002/pro.5560050209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yue K, Dill KA. Sequence-structure relationships in proteins and copolymers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Sep;48(3):2267–2278. doi: 10.1103/physreve.48.2267. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES