Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Oct;9(10):2034–2037. doi: 10.1110/ps.9.10.2034

The three-dimensional structure of the ternary complex of Corynebacterium glutamicum diaminopimelate dehydrogenase-NADPH-L-2-amino-6-methylene-pimelate.

M Cirilli 1, G Scapin 1, A Sutherland 1, J C Vederas 1, J S Blanchard 1
PMCID: PMC2144477  PMID: 11106178

Abstract

The three-dimensional (3D) structure of Corynebacterium glutamicum diaminopimelate D-dehydrogenase in a ternary complex with NADPH and L-2-amino-6-methylene-pimelate has been solved and refined to a resolution of 2.1 A. L-2-Amino-6-methylene-pimelate was recently synthesized and shown to be a potent competitive inhibitor (5 microM) vs. meso-diaminopimelate of the Bacillus sphaericus dehydrogenase (Sutherland et al., 1999). Diaminopimelate dehydrogenase catalyzes the reversible NADP+ -dependent oxidation of the D-amino acid stereocenter of mesodiaminopimelate, and is the only enzyme known to catalyze the oxidative deamination of a D-amino acid. The enzyme is involved in the biosynthesis of meso-diaminopimelate and L-lysine from L-aspartate, a biosynthetic pathway of considerable interest because it is essential for growth of certain bacteria. The dehydrogenase is found in a limited number of species of bacteria, as opposed to the alternative succinylase and acetylase pathways that are widely distributed in bacteria and plants. The structure of the ternary complex reported here provides a structural rationale for the nature and potency of the inhibition exhibited by the unsaturated L-2-amino-6-methylene-pimelate against the dehydrogenase. In particular, we compare the present structure with other structures containing either bound substrate, meso-diaminopimelate, or a conformationally restricted isoxazoline inhibitor. We have identified a significant interaction between the alpha-L-amino group of the unsaturated inhibitor and the indole ring of Trp144 that may account for the tight binding of this inhibitor.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. J., Turnbull A. P., Sedelnikova S. E., Stillman T. J., Rice D. W. A role for quaternary structure in the substrate specificity of leucine dehydrogenase. Structure. 1995 Jul 15;3(7):693–705. doi: 10.1016/s0969-2126(01)00204-0. [DOI] [PubMed] [Google Scholar]
  2. Burley S. K., Petsko G. A. Amino-aromatic interactions in proteins. FEBS Lett. 1986 Jul 28;203(2):139–143. doi: 10.1016/0014-5793(86)80730-x. [DOI] [PubMed] [Google Scholar]
  3. Cox R. J. The DAP pathway to lysine as a target for antimicrobial agents. Nat Prod Rep. 1996 Feb;13(1):29–43. doi: 10.1039/np9961300029. [DOI] [PubMed] [Google Scholar]
  4. Ishino S., Mizukami T., Yamaguchi K., Katsumata R., Araki K. Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum. Nucleic Acids Res. 1987 May 11;15(9):3917–3917. doi: 10.1093/nar/15.9.3917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Levitt M., Perutz M. F. Aromatic rings act as hydrogen bond acceptors. J Mol Biol. 1988 Jun 20;201(4):751–754. doi: 10.1016/0022-2836(88)90471-8. [DOI] [PubMed] [Google Scholar]
  6. Scapin G., Cirilli M., Reddy S. G., Gao Y., Vederas J. C., Blanchard J. S. Substrate and inhibitor binding sites in Corynebacterium glutamicum diaminopimelate dehydrogenase. Biochemistry. 1998 Mar 10;37(10):3278–3285. doi: 10.1021/bi9727949. [DOI] [PubMed] [Google Scholar]
  7. Scapin G., Reddy S. G., Blanchard J. S. Three-dimensional structure of meso-diaminopimelic acid dehydrogenase from Corynebacterium glutamicum. Biochemistry. 1996 Oct 22;35(42):13540–13551. doi: 10.1021/bi961628i. [DOI] [PubMed] [Google Scholar]
  8. Schrumpf B., Schwarzer A., Kalinowski J., Pühler A., Eggeling L., Sahm H. A functionally split pathway for lysine synthesis in Corynebacterium glutamicium. J Bacteriol. 1991 Jul;173(14):4510–4516. doi: 10.1128/jb.173.14.4510-4516.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sonntag K., Eggeling L., De Graaf A. A., Sahm H. Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem. 1993 May 1;213(3):1325–1331. doi: 10.1111/j.1432-1033.1993.tb17884.x. [DOI] [PubMed] [Google Scholar]
  10. Stillman T. J., Baker P. J., Britton K. L., Rice D. W. Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis. J Mol Biol. 1993 Dec 20;234(4):1131–1139. doi: 10.1006/jmbi.1993.1665. [DOI] [PubMed] [Google Scholar]
  11. Vanhooke J. L., Thoden J. B., Brunhuber N. M., Blanchard J. S., Holden H. M. Phenylalanine dehydrogenase from Rhodococcus sp. M4: high-resolution X-ray analyses of inhibitory ternary complexes reveal key features in the oxidative deamination mechanism. Biochemistry. 1999 Feb 23;38(8):2326–2339. doi: 10.1021/bi982244q. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES