Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Nov;9(11):2285–2291. doi: 10.1110/ps.9.11.2285

Prediction of a common beta-propeller catalytic domain for fructosyltransferases of different origin and substrate specificity.

T Pons 1, L Hernández 1, F R Batista 1, G Chinea 1
PMCID: PMC2144480  PMID: 11305239

Abstract

The three-dimensional (3D) structure of fructan biosynthetic enzymes is still unknown. Here, we have explored folding similarities between reported microbial and plant enzymes that catalyze transfructosylation reactions. A sequence-structure compatibility search using TOPITS, SDP, 3D-PSSM, and SAM-T98 programs identified a beta-propeller fold with scores above the confidence threshold that indicate a structurally conserved catalytic domain in fructosyltransferases (FTFs) of diverse origin and substrate specificity. The predicted fold appeared related to that of neuraminidase and sialidase, of glycoside hydrolase families 33 and 34, respectively. The most reliable structural model was obtained using the crystal structure of neuraminidase (Protein Data Bank file: 5nn9) as template, and it is consistent with the location of previously identified functional residues of bacterial levansucrases (Batista et al., 1999; Song & Jacques, 1999). The sequence-sequence analysis presented here reinforces the recent inclusion of fungal and plant FTFs into glycoside hydrolase family 32, and suggests a modified sequence pattern H-x (2)-[PTV]-x (4)-[LIVMA]-[NSCAYG]-[DE]-P-[NDSC][GA]3 for this family.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1997. Nucleic Acids Res. 1997 Jan 1;25(1):217–221. doi: 10.1093/nar/25.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Batista F. R., Hernández L., Fernández J. R., Arrieta J., Menéndez C., Gómez R., Támbara Y., Pons T. Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotrophicus levansucrase affects sucrose hydrolysis, but not enzyme specificity. Biochem J. 1999 Feb 1;337(Pt 3):503–506. [PMC free article] [PubMed] [Google Scholar]
  4. Chambert R., Petit-Glatron M. F. Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J. 1991 Oct 1;279(Pt 1):35–41. doi: 10.1042/bj2790035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cockwell K. Y., Giles I. G. Software tools for motif and pattern scanning: program descriptions including a universal sequence reading algorithm. Comput Appl Biosci. 1989 Jul;5(3):227–232. doi: 10.1093/bioinformatics/5.3.227. [DOI] [PubMed] [Google Scholar]
  6. Etzold T., Ulyanov A., Argos P. SRS: information retrieval system for molecular biology data banks. Methods Enzymol. 1996;266:114–128. doi: 10.1016/s0076-6879(96)66010-8. [DOI] [PubMed] [Google Scholar]
  7. Fischer D., Eisenberg D. Protein fold recognition using sequence-derived predictions. Protein Sci. 1996 May;5(5):947–955. doi: 10.1002/pro.5560050516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
  9. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  10. Karplus K., Barrett C., Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics. 1998;14(10):846–856. doi: 10.1093/bioinformatics/14.10.846. [DOI] [PubMed] [Google Scholar]
  11. Pons T., Olmea O., Chinea G., Beldarraín A., Márquez G., Acosta N., Rodríguez L., Valencia A. Structural model for family 32 of glycosyl-hydrolase enzymes. Proteins. 1998 Nov 15;33(3):383–395. doi: 10.1002/(sici)1097-0134(19981115)33:3<383::aid-prot7>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  12. Reddy A., Maley F. Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J Biol Chem. 1996 Jun 14;271(24):13953–13957. doi: 10.1074/jbc.271.24.13953. [DOI] [PubMed] [Google Scholar]
  13. Reddy V. A., Maley F. Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis. J Biol Chem. 1990 Jul 5;265(19):10817–10820. [PubMed] [Google Scholar]
  14. Reva B. A., Skolnick J., Finkelstein A. V. Averaging interaction energies over homologs improves protein fold recognition in gapless threading. Proteins. 1999 May 15;35(3):353–359. [PubMed] [Google Scholar]
  15. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  16. Rost B., Schneider R., Sander C. Protein fold recognition by prediction-based threading. J Mol Biol. 1997 Jul 18;270(3):471–480. doi: 10.1006/jmbi.1997.1101. [DOI] [PubMed] [Google Scholar]
  17. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  18. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  19. Song D. D., Jacques N. A. Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975. Biochem J. 1999 Nov 15;344(Pt 1):259–264. doi: 10.1042/0264-6021:3440259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vijn I., Smeekens S. Fructan: more than a reserve carbohydrate? Plant Physiol. 1999 Jun;120(2):351–360. doi: 10.1104/pp.120.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES