Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Nov;9(11):2260–2268. doi: 10.1110/ps.9.11.2260

Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry.

W D Lehmann 1, A Schlosser 1, G Erben 1, R Pipkorn 1, D Bossemeyer 1, V Kinzel 1
PMCID: PMC2144491  PMID: 11152137

Abstract

In view of the significance of Asn deamidation and Asp isomerization to isoAsp at certain sites for protein aging and turnover, it was desirable to challenge the extreme analytical power of electrospray tandem mass spectrometry (ESI-MS/MS) for the possibility of a site-specific detection of this posttranslational modification. For this purpose, synthetic L-Asp/L-isoAsp containing oligopeptide pairs were investigated by ESI-MS/MS and low-energy collision-induced dissociation (CID). Replacement of L-Asp by L-isoAsp resulted in the same kind of shifts for all 15 peptide pairs investigated: (1) the b/y intensity ratio of complementary b and y ions generated by cleavage of the (L-Asp/L-isoAsp)-X bond and of the X-(L-Asp/L-isoAsp) bond was decreased, and (2) the Asp immonium ion abundance at m/z 88 was also decreased. It is proposed that the isoAsp structure hampers the accepted mechanism of b-ion formation on both its N- and C-terminal side. The b/y ion intensity ratio and the relative immonium ion intensity vary considerably, depending on the peptide sequence, but the corresponding values are reproducible when recorded on the same instrument under identical instrumental settings. Thus, once the reference product ion spectra have been documented for a pair of synthetic peptides containing either L-Asp or L-isoAsp, these identify one or the other form. Characterization and relative quantification of L-Asp/L-isoAsp peptide mixtures are also possible as demonstrated for two sequences for which isoAsp formation has been described, namely myrG-D/isoD-AAAAK (deamidated peptide 1-7 of protein kinase A catalytic subunit) and VQ-D/isoD-GLR (deamidated peptide 41-46 of human procollagen alpha 1). Thus, the analytical procedures described may be helpful for the identification of suspected Asn deamidation and Asp isomerization sites in proteolytic digests of proteins.

Full Text

The Full Text of this article is available as a PDF (646.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biemann K. Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol. 1990;193:886–887. doi: 10.1016/0076-6879(90)93460-3. [DOI] [PubMed] [Google Scholar]
  2. Brady J. D., Ju J., Robins S. P. Isoaspartyl bond formation within N-terminal sequences of collagen type I: implications for their use as markers of collagen degradation. Clin Sci (Lond) 1999 Feb;96(2):209–215. [PubMed] [Google Scholar]
  3. Carlson A. D., Riggin R. M. Development of improved high-performance liquid chromatography conditions for nonisotopic detection of isoaspartic acid to determine the extent of protein deamidation. Anal Biochem. 2000 Feb 15;278(2):150–155. doi: 10.1006/abio.1999.4421. [DOI] [PubMed] [Google Scholar]
  4. Carr S. A., Hemling M. E., Bean M. F., Roberts G. D. Integration of mass spectrometry in analytical biotechnology. Anal Chem. 1991 Dec 15;63(24):2802–2824. doi: 10.1021/ac00024a003. [DOI] [PubMed] [Google Scholar]
  5. Clarke S. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res. 1987 Dec;30(6):808–821. doi: 10.1111/j.1399-3011.1987.tb03390.x. [DOI] [PubMed] [Google Scholar]
  6. Cloos P. A., Fledelius C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. Biochem J. 2000 Feb 1;345(Pt 3):473–480. [PMC free article] [PubMed] [Google Scholar]
  7. Galletti P., Ciardiello A., Ingrosso D., Di Donato A., D'Alessio G. Repair of isopeptide bonds by protein carboxyl O-methyltransferase: seminal ribonuclease as a model system. Biochemistry. 1988 Mar 8;27(5):1752–1757. doi: 10.1021/bi00405a055. [DOI] [PubMed] [Google Scholar]
  8. Geiger T., Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem. 1987 Jan 15;262(2):785–794. [PubMed] [Google Scholar]
  9. Grossenbacher H., Märki W., Coulot M., Müller D., Richter W. J. Characterization of succinimide-type dehydration products of recombinant hirudin variant 1 by electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom. 1993 Dec;7(12):1082–1085. doi: 10.1002/rcm.1290071205. [DOI] [PubMed] [Google Scholar]
  10. Jedrzejewski P. T., Girod A., Tholey A., König N., Thullner S., Kinzel V., Bossemeyer D. A conserved deamidation site at Asn 2 in the catalytic subunit of mammalian cAMP-dependent protein kinase detected by capillary LC-MS and tandem mass spectrometry. Protein Sci. 1998 Feb;7(2):457–469. doi: 10.1002/pro.5560070227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson B. A., Aswad D. W. Optimal conditions for the use of protein L-isoaspartyl methyltransferase in assessing the isoaspartate content of peptides and proteins. Anal Biochem. 1991 Feb 1;192(2):384–391. doi: 10.1016/0003-2697(91)90553-6. [DOI] [PubMed] [Google Scholar]
  12. Kinzel V., König N., Pipkorn R., Bossemeyer D., Lehmann W. D. The amino terminus of PKA catalytic subunit--a site for introduction of posttranslational heterogeneities by deamidation: D-Asp2 and D-isoAsp2 containing isozymes. Protein Sci. 2000 Nov;9(11):2269–2277. doi: 10.1110/ps.9.11.2269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lloyd J. R., Cotter M. L., Ohori D., Doyle D. L. Distinction of alpha- and beta-aspartyl and alpha- and gamma-glutamyl peptides by fast atom bombardment/tandem mass spectrometry. Biomed Environ Mass Spectrom. 1988 Apr 1;15(7):399–402. doi: 10.1002/bms.1200150707. [DOI] [PubMed] [Google Scholar]
  14. Lowenson J. D., Clarke S. Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. J Biol Chem. 1992 Mar 25;267(9):5985–5995. [PubMed] [Google Scholar]
  15. McFadden P. N., Clarke S. Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins. Proc Natl Acad Sci U S A. 1987 May;84(9):2595–2599. doi: 10.1073/pnas.84.9.2595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nold M. J., Cerda B. A., Wesdemiotis C. Proton affinities of the N- and C-terminal segments arising upon the dissociation of the amide bond in protonated peptides. J Am Soc Mass Spectrom. 1999 Jan;10(1):1–8. doi: 10.1016/S1044-0305(98)00120-2. [DOI] [PubMed] [Google Scholar]
  17. Pepperkok R., Hotz-Wagenblatt A., König N., Girod A., Bossemeyer D., Kinzel V. Intracellular distribution of mammalian protein kinase A catalytic subunit altered by conserved Asn2 deamidation. J Cell Biol. 2000 Feb 21;148(4):715–726. doi: 10.1083/jcb.148.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Purcell A. W., Aguilar M. I., Hearn M. T. High-performance liquid chromatography of amino acids, peptides and proteins. XC. Investigations into the relationship between structure and reversed-phase high-performance liquid chromatography retention behaviour of peptides related to human growth hormone. J Chromatogr. 1989 Aug 4;476:113–123. doi: 10.1016/s0021-9673(01)93861-0. [DOI] [PubMed] [Google Scholar]
  19. Roepstorff P., Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984 Nov;11(11):601–601. doi: 10.1002/bms.1200111109. [DOI] [PubMed] [Google Scholar]
  20. SMYTH D. G., STEIN W. H., MOORE S. The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations. J Biol Chem. 1963 Jan;238:227–234. [PubMed] [Google Scholar]
  21. Schindler P., Müller D., Märki W., Grossenbacher H., Richter W. J. Characterization of a beta-Asp33 isoform of recombinant hirudin sequence variant 1 by low-energy collision-induced dissociation. J Mass Spectrom. 1996 Sep;31(9):967–974. doi: 10.1002/(SICI)1096-9888(199609)31:9<967::AID-JMS381>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  22. Schwartz B. L., McClain R. D., Erickson B. W., Bursey M. M. Differentiation between selected pairs of tripeptide diastereomers by tandem mass spectrometry on a hybrid tandem mass spectrometer. Rapid Commun Mass Spectrom. 1993 May;7(5):339–342. doi: 10.1002/rcm.1290070507. [DOI] [PubMed] [Google Scholar]
  23. Steffens J. C., Hunt D. F., Williams B. G. Accumulation of non-protein metal-binding polypeptides (gamma-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells. J Biol Chem. 1986 Oct 25;261(30):13879–13882. [PubMed] [Google Scholar]
  24. Stevenson C. L., Williams T. D., Anderegg R. J., Borchardt R. T. Identification and quantitation of tetrapeptide deamidation products by mass spectrometry. J Pharm Biomed Anal. 1992 Aug;10(8):567–575. doi: 10.1016/0731-7085(92)80082-x. [DOI] [PubMed] [Google Scholar]
  25. Teshima G., Stults J. T., Ling V., Canova-Davis E. Isolation and characterization of a succinimide variant of methionyl human growth hormone. J Biol Chem. 1991 Jul 25;266(21):13544–13547. [PubMed] [Google Scholar]
  26. Violand B. N., Schlittler M. R., Kolodziej E. W., Toren P. C., Cabonce M. A., Siegel N. R., Duffin K. L., Zobel J. F., Smith C. E., Tou J. S. Isolation and characterization of porcine somatotropin containing a succinimide residue in place of aspartate129. Protein Sci. 1992 Dec;1(12):1634–1641. doi: 10.1002/pro.5560011211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Violand B. N., Schlittler M. R., Toren P. C., Siegel N. R. Formation of isoaspartate 99 in bovine and porcine somatotropins. J Protein Chem. 1990 Feb;9(1):109–117. doi: 10.1007/BF01024992. [DOI] [PubMed] [Google Scholar]
  28. Watanabe A., Takio K., Ihara Y. Deamidation and isoaspartate formation in smeared tau in paired helical filaments. Unusual properties of the microtubule-binding domain of tau. J Biol Chem. 1999 Mar 12;274(11):7368–7378. doi: 10.1074/jbc.274.11.7368. [DOI] [PubMed] [Google Scholar]
  29. Wright H. T. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol. 1991;26(1):1–52. doi: 10.3109/10409239109081719. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES