Abstract
Conserved deamidation of PKA catalytic subunit isozymes Calpha and Cbeta--more than 25% at Asn2 in vivo in both cases--has been shown to yield Asp2- and isoAsp2-containing isozymes (Jedrzejewski PT, Girod A, Tholey A, König N, Thullner S, Kinzel V, Bossemeyer D, 1998, Protein Sci 7:457-469). Isoaspartate formation in proteins in vivo is indicative of succinimide intermediates involved in both the initial deamidation reaction as well as the "repair" of isoAsp to Asp by the action of protein L-isoaspartyl (D-aspartyl) O-methyl transferase (PIMT). L-Succinimide is prone to racemization to D-succinimide, which may hydrolyze to D-isoAsp- and D-Asp-containing diastereomers with, respectively, no and poor substrate character for PIMT. To analyze native PKA catalytic subunit from cardiac muscle for these isomers the N-terminal tryptic peptides (T1) of the enzyme were analyzed following procedures refined specifically with a set of corresponding synthetic peptides. The methods combined high resolution high-performance liquid chromatography and a new mass spectrometric procedure for the discrimination between Asp- and isoAsp-residues in peptides (Lehmann et al., 2000). The results demonstrate the occurrence of D-isoAsp- and D-Asp-containing T1 fragments in addition to the L-isomers. The small amount of the L-isoAsp isomer, representing only part of the D-isoAsp isomer, and the relatively large amounts of the L-Asp and D-Asp isomers argues for an effective action of PIMT present in cardiac tissue.
Full Text
The Full Text of this article is available as a PDF (605.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Artigues A., Birkett A., Schirch V. Evidence for the in vivo deamidation and isomerization of an asparaginyl residue in cytosolic serine hydroxymethyltransferase. J Biol Chem. 1990 Mar 25;265(9):4853–4858. [PubMed] [Google Scholar]
- Aswad D. W. Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl methyltransferase requires deamidation of asparagine 25. Evidence for methylation at the alpha-carboxyl group of atypical L-isoaspartyl residues. J Biol Chem. 1984 Sep 10;259(17):10714–10721. [PubMed] [Google Scholar]
- Boivin D., Bilodeau D., Béliveau R. Immunochemical characterization of L-isoaspartyl-protein carboxyl methyltransferase from mammalian tissues. Biochem J. 1995 Aug 1;309(Pt 3):993–998. doi: 10.1042/bj3090993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornstein P., Balian G. Cleavage at Asn-Gly bonds with hydroxylamine. Methods Enzymol. 1977;47:132–145. doi: 10.1016/0076-6879(77)47016-2. [DOI] [PubMed] [Google Scholar]
- Clarke S. Perspectives on the biological function and enzymology of protein carboxyl methylation reactions in eucaryotic and procaryotic cells. Adv Exp Med Biol. 1988;231:213–228. doi: 10.1007/978-1-4684-9042-8_17. [DOI] [PubMed] [Google Scholar]
- Clarke S. Protein carboxyl methyltransferases: two distinct classes of enzymes. Annu Rev Biochem. 1985;54:479–506. doi: 10.1146/annurev.bi.54.070185.002403. [DOI] [PubMed] [Google Scholar]
- Fujii N., Momose Y., Ishii N., Takita M., Akaboshi M., Kodama M. The mechanisms of simultaneous stereoinversion, racemization, and isomerization at specific aspartyl residues of aged lens proteins. Mech Ageing Dev. 1999 Mar 15;107(3):347–358. doi: 10.1016/s0047-6374(98)00129-8. [DOI] [PubMed] [Google Scholar]
- Fujii N., Momose Y., Yamasaki M., Yamagaki T., Nakanishi H., Uemura T., Takita M., Ishii N. The conformation formed by the domain after alanine-155 induces inversion of aspartic acid-151 in alpha A-crystallin from aged human lenses. Biochem Biophys Res Commun. 1997 Oct 29;239(3):918–923. doi: 10.1006/bbrc.1997.7365. [DOI] [PubMed] [Google Scholar]
- Fujii N., Satoh K., Harada K., Ishibashi Y. Simultaneous stereoinversion and isomerization at specific aspartic acid residues in alpha A-crystallin from human lens. J Biochem. 1994 Sep;116(3):663–669. doi: 10.1093/oxfordjournals.jbchem.a124577. [DOI] [PubMed] [Google Scholar]
- Galletti P., Ingrosso D., Manna C., Sica F., Capasso S., Pucci P., Marino G. Enzymatic methyl esterification of synthetic tripeptides: structural requirements of the peptide substrate. Detection of the reaction products by fast-atom-bombardment mass spectrometry. Eur J Biochem. 1988 Oct 15;177(1):233–239. doi: 10.1111/j.1432-1033.1988.tb14367.x. [DOI] [PubMed] [Google Scholar]
- Geiger T., Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem. 1987 Jan 15;262(2):785–794. [PubMed] [Google Scholar]
- Girod A., Kinzel V., Bossemeyer D. In vivo activation of recombinant cAPK catalytic subunit active site mutants by coexpression of the wild-type enzyme, evidence for intermolecular cotranslational phosphorylation. FEBS Lett. 1996 Aug 5;391(1-2):121–125. doi: 10.1016/0014-5793(96)00717-x. [DOI] [PubMed] [Google Scholar]
- Jedrzejewski P. T., Girod A., Tholey A., König N., Thullner S., Kinzel V., Bossemeyer D. A conserved deamidation site at Asn 2 in the catalytic subunit of mammalian cAMP-dependent protein kinase detected by capillary LC-MS and tandem mass spectrometry. Protein Sci. 1998 Feb;7(2):457–469. doi: 10.1002/pro.5560070227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim E., Lowenson J. D., MacLaren D. C., Clarke S., Young S. G. Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6132–6137. doi: 10.1073/pnas.94.12.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinzel V., Hotz A., König N., Gagelmann M., Pyerin W., Reed J., Kübler D., Hofmann F., Obst C., Gensheimer H. P. Chromatographic separation of two heterogeneous forms of the catalytic subunit of cyclic AMP-dependent protein kinase holoenzyme type I and type II from striated muscle of different mammalian species. Arch Biochem Biophys. 1987 Mar;253(2):341–349. doi: 10.1016/0003-9861(87)90187-1. [DOI] [PubMed] [Google Scholar]
- Lee S. L., Steinberg R. A. Pathways for degradation of the catalytic subunit of cAMP-dependent protein kinase differ in wild-type and kinase-negative S49 mouse lymphoma cells. J Biol Chem. 1996 Jul 12;271(28):16553–16558. doi: 10.1074/jbc.271.28.16553. [DOI] [PubMed] [Google Scholar]
- Lee T. H., Thompson P. E., Hearn M. T., Aguilar M. I. Conformational stability of a type II' beta-turn motif in human growth hormone [6-13] peptide analogues at hydrophobic surfaces. J Pept Res. 1997 May;49(5):394–403. doi: 10.1111/j.1399-3011.1997.tb00891.x. [DOI] [PubMed] [Google Scholar]
- Lehmann W. D., Schlosser A., Erben G., Pipkorn R., Bossemeyer D., Kinzel V. Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry. Protein Sci. 2000 Nov;9(11):2260–2268. doi: 10.1110/ps.9.11.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowenson J. D., Clarke S. Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. J Biol Chem. 1992 Mar 25;267(9):5985–5995. [PubMed] [Google Scholar]
- Lura R., Schirch V. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues. Biochemistry. 1988 Oct 4;27(20):7671–7677. doi: 10.1021/bi00420a015. [DOI] [PubMed] [Google Scholar]
- McFadden P. N., Clarke S. Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins. Proc Natl Acad Sci U S A. 1987 May;84(9):2595–2599. doi: 10.1073/pnas.84.9.2595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
- Murray E. D., Jr, Clarke S. Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase. Detection of a new site of methylation at isomerized L-aspartyl residues. J Biol Chem. 1984 Sep 10;259(17):10722–10732. [PubMed] [Google Scholar]
- Olsen S. R., Uhler M. D. Affinity purification of the C alpha and C beta isoforms of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1989 Nov 5;264(31):18662–18666. [PubMed] [Google Scholar]
- Ota I. M., Clarke S. Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin. The role of conformational flexibility in spontaneous isoaspartyl formation. J Biol Chem. 1989 Jan 5;264(1):54–60. [PubMed] [Google Scholar]
- Pepperkok R., Hotz-Wagenblatt A., König N., Girod A., Bossemeyer D., Kinzel V. Intracellular distribution of mammalian protein kinase A catalytic subunit altered by conserved Asn2 deamidation. J Cell Biol. 2000 Feb 21;148(4):715–726. doi: 10.1083/jcb.148.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purcell A. W., Aguilar M. I., Hearn M. T. High-performance liquid chromatography of amino acids, peptides and proteins. XC. Investigations into the relationship between structure and reversed-phase high-performance liquid chromatography retention behaviour of peptides related to human growth hormone. J Chromatogr. 1989 Aug 4;476:113–123. doi: 10.1016/s0021-9673(01)93861-0. [DOI] [PubMed] [Google Scholar]
- Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
- Walsh D. A., Van Patten S. M. Multiple pathway signal transduction by the cAMP-dependent protein kinase. FASEB J. 1994 Dec;8(15):1227–1236. doi: 10.1096/fasebj.8.15.8001734. [DOI] [PubMed] [Google Scholar]
- Weber W., Hilz H. cAMP-dependent protein kinases I and II: divergent turnover of subunits. Biochemistry. 1986 Sep 23;25(19):5661–5667. doi: 10.1021/bi00367a047. [DOI] [PubMed] [Google Scholar]
- Wright H. T. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit Rev Biochem Mol Biol. 1991;26(1):1–52. doi: 10.3109/10409239109081719. [DOI] [PubMed] [Google Scholar]