Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Nov;9(11):2225–2231. doi: 10.1110/ps.9.11.2225

Phosphoryl transfer by a concerted reaction mechanism in UMP/CMP-kinase.

M C Hutter 1, V Helms 1
PMCID: PMC2144498  PMID: 11152133

Abstract

The reaction mechanism of phosphoryl transfer catalyzed by UMP/CMP-kinase from Dictyostelium discoideum was investigated by semiempirical AM1 molecular orbital computations of an active site model system derived from crystal structures that contain a transition state analog or a bisubstrate inhibitor. The computational results suggest that the nucleoside monophosphate must be protonated for the forward reaction while it is unprotonated in the presence of aluminium fluoride, a popular transition state analog for phosphoryl transfer reactions. Furthermore, a compactification of the active site model system during the reaction and for the corresponding complex containing AlF3 was observed. For the active site residues that are part of the LID domain, conformational flexibility during the reaction proved to be crucial. On the basis of the calculations, a concerted phosphoryl transfer mechanism is suggested that involves the synchronous shift of a proton from the monophosphate to the transferred PO3-group. The proposed mechanism is thus analogous to the phosphoryl transfer mechanism in cAMP-dependent protein kinase that phosphorylates the hydroxyl groups of serine residues.

Full Text

The Full Text of this article is available as a PDF (480.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Admiraal S. J., Herschlag D. Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chem Biol. 1995 Nov;2(11):729–739. doi: 10.1016/1074-5521(95)90101-9. [DOI] [PubMed] [Google Scholar]
  2. Admiraal S. J., Schneider B., Meyer P., Janin J., Véron M., Deville-Bonne D., Herschlag D. Nucleophilic activation by positioning in phosphoryl transfer catalyzed by nucleoside diphosphate kinase. Biochemistry. 1999 Apr 13;38(15):4701–4711. doi: 10.1021/bi9827565. [DOI] [PubMed] [Google Scholar]
  3. Bossemeyer D. Protein kinases--structure and function. FEBS Lett. 1995 Aug 1;369(1):57–61. doi: 10.1016/0014-5793(95)00580-3. [DOI] [PubMed] [Google Scholar]
  4. Hutter M. C., Helms V. Influence of key residues on the reaction mechanism of the cAMP-dependent protein kinase. Protein Sci. 1999 Dec;8(12):2728–2733. doi: 10.1110/ps.8.12.2728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hünenberger P. H., Helms V., Narayana N., Taylor S. S., McCammon J. A. Determinants of ligand binding to cAMP-dependent protein kinase. Biochemistry. 1999 Feb 23;38(8):2358–2366. doi: 10.1021/bi982064g. [DOI] [PubMed] [Google Scholar]
  6. Madhusudan, Trafny E. A., Xuong N. H., Adams J. A., Ten Eyck L. F., Taylor S. S., Sowadski J. M. cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Protein Sci. 1994 Feb;3(2):176–187. doi: 10.1002/pro.5560030203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mildvan A. S. Mechanisms of signaling and related enzymes. Proteins. 1997 Dec;29(4):401–416. [PubMed] [Google Scholar]
  8. Scheffzek K., Kliche W., Wiesmüller L., Reinstein J. Crystal structure of the complex of UMP/CMP kinase from Dictyostelium discoideum and the bisubstrate inhibitor P1-(5'-adenosyl) P5-(5'-uridyl) pentaphosphate (UP5A) and Mg2+ at 2.2 A: implications for water-mediated specificity. Biochemistry. 1996 Jul 30;35(30):9716–9727. doi: 10.1021/bi960642s. [DOI] [PubMed] [Google Scholar]
  9. Schlichting I., Reinstein J. Structures of active conformations of UMP kinase from Dictyostelium discoideum suggest phosphoryl transfer is associative. Biochemistry. 1997 Aug 5;36(31):9290–9296. doi: 10.1021/bi970974c. [DOI] [PubMed] [Google Scholar]
  10. Schlichting I., Reinstein J. pH influences fluoride coordination number of the AlFx phosphoryl transfer transition state analog. Nat Struct Biol. 1999 Aug;6(8):721–723. doi: 10.1038/11485. [DOI] [PubMed] [Google Scholar]
  11. Schweins T., Geyer M., Kalbitzer H. R., Wittinghofer A., Warshel A. Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5'-triphosphate hydrolysis of p21ras. Biochemistry. 1996 Nov 12;35(45):14225–14231. doi: 10.1021/bi961118o. [DOI] [PubMed] [Google Scholar]
  12. Schweins T., Langen R., Warshel A. Why have mutagenesis studies not located the general base in ras p21. Nat Struct Biol. 1994 Jul;1(7):476–484. doi: 10.1038/nsb0794-476. [DOI] [PubMed] [Google Scholar]
  13. Vonrhein C., Schlauderer G. J., Schulz G. E. Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure. 1995 May 15;3(5):483–490. doi: 10.1016/s0969-2126(01)00181-2. [DOI] [PubMed] [Google Scholar]
  14. Warshel A., Aqvist J. Electrostatic energy and macromolecular function. Annu Rev Biophys Biophys Chem. 1991;20:267–298. doi: 10.1146/annurev.bb.20.060191.001411. [DOI] [PubMed] [Google Scholar]
  15. Yan H., Tsai M. D. Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. Adv Enzymol Relat Areas Mol Biol. 1999;73:103-34, x. doi: 10.1002/9780470123195.ch4. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES