Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Nov;9(11):2251–2259. doi: 10.1110/ps.9.11.2251

Exploring steric constraints on protein mutations using MAGE/PROBE.

J M Word 1, R C Bateman Jr 1, B K Presley 1, S C Lovell 1, D C Richardson 1
PMCID: PMC2144501  PMID: 11152136

Abstract

When planning a mutation to test some hypothesis, one crucial question is whether the new side chain is compatible with the existing structure; only if it is compatible can the interpretation of mutational results be straightforward. This paper presents a simple way of using the sensitive geometry of all-atom contacts (including hydrogens) to answer that question. The interactive MAGE/PROBE system lets the biologist explore conformational space for the mutant side chain, with an interactively updated kinemage display of its all-atom contacts to the original structure. The Autobondrot function in PROBE systematically explores that same conformational space, outputting contact scores at each point, which are then contoured and displayed. These procedures are applied here in two types of test cases, with known mutant structures. In ricin A chain, the ability of a neighboring glutamate to rescue activity of an active-site mutant is modeled successfully. In T4 lysozyme, six mutations to Leu are analyzed within the wild-type background structure, and their Autobondrot score maps correctly predict whether or not their surroundings must shift significantly in the actual mutant structures; interactive examination of contacts for the conformations involved explains which clashes are relieved by the motions. These programs are easy to use, are available free for UNIX or Microsoft Windows operating systems, and should be of significant help in choosing good mutation experiments or in understanding puzzling results.

Full Text

The Full Text of this article is available as a PDF (186.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin E. P., Hajiseyedjavadi O., Baase W. A., Matthews B. W. The role of backbone flexibility in the accommodation of variants that repack the core of T4 lysozyme. Science. 1993 Dec 10;262(5140):1715–1718. doi: 10.1126/science.8259514. [DOI] [PubMed] [Google Scholar]
  2. Baldwin E., Xu J., Hajiseyedjavadi O., Baase W. A., Matthews B. W. Thermodynamic and structural compensation in "size-switch" core repacking variants of bacteriophage T4 lysozyme. J Mol Biol. 1996 Jun 14;259(3):542–559. doi: 10.1006/jmbi.1996.0338. [DOI] [PubMed] [Google Scholar]
  3. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  5. Blaber M., Lindstrom J. D., Gassner N., Xu J., Heinz D. W., Matthews B. W. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme. Biochemistry. 1993 Oct 26;32(42):11363–11373. doi: 10.1021/bi00093a013. [DOI] [PubMed] [Google Scholar]
  6. Blaber M., Zhang X. J., Lindstrom J. D., Pepiot S. D., Baase W. A., Matthews B. W. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. J Mol Biol. 1994 Jan 14;235(2):600–624. doi: 10.1006/jmbi.1994.1016. [DOI] [PubMed] [Google Scholar]
  7. Blaber M., Zhang X. J., Matthews B. W. Structural basis of amino acid alpha helix propensity. Science. 1993 Jun 11;260(5114):1637–1640. doi: 10.1126/science.8503008. [DOI] [PubMed] [Google Scholar]
  8. Endo Y., Mitsui K., Motizuki M., Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem. 1987 Apr 25;262(12):5908–5912. [PubMed] [Google Scholar]
  9. Eriksson A. E., Baase W. A., Matthews B. W. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. J Mol Biol. 1993 Feb 5;229(3):747–769. doi: 10.1006/jmbi.1993.1077. [DOI] [PubMed] [Google Scholar]
  10. Faber H. R., Matthews B. W. A mutant T4 lysozyme displays five different crystal conformations. Nature. 1990 Nov 15;348(6298):263–266. doi: 10.1038/348263a0. [DOI] [PubMed] [Google Scholar]
  11. Frankel A., Schlossman D., Welsh P., Hertler A., Withers D., Johnston S. Selection and characterization of ricin toxin A-chain mutations in Saccharomyces cerevisiae. Mol Cell Biol. 1989 Feb;9(2):415–420. doi: 10.1128/mcb.9.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frankel A., Welsh P., Richardson J., Robertus J. D. Role of arginine 180 and glutamic acid 177 of ricin toxin A chain in enzymatic inactivation of ribosomes. Mol Cell Biol. 1990 Dec;10(12):6257–6263. doi: 10.1128/mcb.10.12.6257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gassner N. C., Baase W. A., Matthews B. W. A test of the "jigsaw puzzle" model for protein folding by multiple methionine substitutions within the core of T4 lysozyme. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12155–12158. doi: 10.1073/pnas.93.22.12155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ghaemmaghami S., Word J. M., Burton R. E., Richardson J. S., Oas T. G. Folding kinetics of a fluorescent variant of monomeric lambda repressor. Biochemistry. 1998 Jun 23;37(25):9179–9185. doi: 10.1021/bi980356b. [DOI] [PubMed] [Google Scholar]
  15. Hovde C. J., Calderwood S. B., Mekalanos J. J., Collier R. J. Evidence that glutamic acid 167 is an active-site residue of Shiga-like toxin I. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2568–2572. doi: 10.1073/pnas.85.8.2568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hurley J. H., Baase W. A., Matthews B. W. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J Mol Biol. 1992 Apr 20;224(4):1143–1159. doi: 10.1016/0022-2836(92)90475-y. [DOI] [PubMed] [Google Scholar]
  17. Karpusas M., Baase W. A., Matsumura M., Matthews B. W. Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8237–8241. doi: 10.1073/pnas.86.21.8237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kim Y., Mlsna D., Monzingo A. F., Ready M. P., Frankel A., Robertus J. D. Structure of a ricin mutant showing rescue of activity by a noncatalytic residue. Biochemistry. 1992 Mar 31;31(12):3294–3296. doi: 10.1021/bi00127a035. [DOI] [PubMed] [Google Scholar]
  19. Langridge R., Ferrin T. E., Kuntz I. D., Connolly M. L. Real-time color graphics in studies of molecular interactions. Science. 1981 Feb 13;211(4483):661–666. doi: 10.1126/science.7455704. [DOI] [PubMed] [Google Scholar]
  20. Lee C., Subbiah S. Prediction of protein side-chain conformation by packing optimization. J Mol Biol. 1991 Jan 20;217(2):373–388. doi: 10.1016/0022-2836(91)90550-p. [DOI] [PubMed] [Google Scholar]
  21. Lipscomb L. A., Gassner N. C., Snow S. D., Eldridge A. M., Baase W. A., Drew D. L., Matthews B. W. Context-dependent protein stabilization by methionine-to-leucine substitution shown in T4 lysozyme. Protein Sci. 1998 Mar;7(3):765–773. doi: 10.1002/pro.5560070326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lovell S. C., Word J. M., Richardson J. S., Richardson D. C. The penultimate rotamer library. Proteins. 2000 Aug 15;40(3):389–408. [PubMed] [Google Scholar]
  23. MacKenzie K. R., Prestegard J. H., Engelman D. M. A transmembrane helix dimer: structure and implications. Science. 1997 Apr 4;276(5309):131–133. doi: 10.1126/science.276.5309.131. [DOI] [PubMed] [Google Scholar]
  24. Matsumura M., Matthews B. W. Control of enzyme activity by an engineered disulfide bond. Science. 1989 Feb 10;243(4892):792–794. doi: 10.1126/science.2916125. [DOI] [PubMed] [Google Scholar]
  25. Matthews B. W. Studies on protein stability with T4 lysozyme. Adv Protein Chem. 1995;46:249–278. doi: 10.1016/s0065-3233(08)60337-x. [DOI] [PubMed] [Google Scholar]
  26. Mlsna D., Monzingo A. F., Katzin B. J., Ernst S., Robertus J. D. Structure of recombinant ricin A chain at 2.3 A. Protein Sci. 1993 Mar;2(3):429–435. doi: 10.1002/pro.5560020315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Petrella R. J., Lazaridis T., Karplus M. Protein sidechain conformer prediction: a test of the energy function. Fold Des. 1998;3(5):353–377. doi: 10.1016/S1359-0278(98)00050-9. [DOI] [PubMed] [Google Scholar]
  28. Richardson D. C., Richardson J. S. Kinemages--simple macromolecular graphics for interactive teaching and publication. Trends Biochem Sci. 1994 Mar;19(3):135–138. doi: 10.1016/0968-0004(94)90207-0. [DOI] [PubMed] [Google Scholar]
  29. Richardson D. C., Richardson J. S. The kinemage: a tool for scientific communication. Protein Sci. 1992 Jan;1(1):3–9. doi: 10.1002/pro.5560010102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schlossman D., Withers D., Welsh P., Alexander A., Robertus J., Frankel A. Role of glutamic acid 177 of the ricin toxin A chain in enzymatic inactivation of ribosomes. Mol Cell Biol. 1989 Nov;9(11):5012–5021. doi: 10.1128/mcb.9.11.5012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vetter I. R., Baase W. A., Heinz D. W., Xiong J. P., Snow S., Matthews B. W. Protein structural plasticity exemplified by insertion and deletion mutants in T4 lysozyme. Protein Sci. 1996 Dec;5(12):2399–2415. doi: 10.1002/pro.5560051203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weston S. A., Tucker A. D., Thatcher D. R., Derbyshire D. J., Pauptit R. A. X-ray structure of recombinant ricin A-chain at 1.8 A resolution. J Mol Biol. 1994 Dec 9;244(4):410–422. doi: 10.1006/jmbi.1994.1739. [DOI] [PubMed] [Google Scholar]
  33. Word J. M., Lovell S. C., Richardson J. S., Richardson D. C. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol. 1999 Jan 29;285(4):1735–1747. doi: 10.1006/jmbi.1998.2401. [DOI] [PubMed] [Google Scholar]
  34. Zeng J., Fridman M., Maruta H., Treutlein H. R., Simonson T. Protein-protein recognition: an experimental and computational study of the R89K mutation in Raf and its effect on Ras binding. Protein Sci. 1999 Jan;8(1):50–64. doi: 10.1110/ps.8.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES