Abstract
We have characterized the thermodynamic stability of the SH3 domain from the Saccharomyces cerevisiae Abp1p protein and found it to be relatively low compared to most other SH3 domains, with a Tm of 60 degrees C and a deltaGu of 3.08 kcal/mol. Analysis of a large alignment of SH3 domains led to the identification of atypical residues at eight positions in the wild-type Abp1p SH3 domain sequence that were subsequently replaced by the residue seen most frequently at that position in the alignment. Three of the eight mutants constructed in this way displayed increases in Tm ranging from 8 to 15 degrees C with concomitant increases in deltaGu of up to 1.4 kcal/mol. The effects of these substitutions on folding thermodynamics and kinetics were entirely additive, and a mutant containing all three was dramatically stabilized with a Tm greater than 90 degrees C and a deltaGu more than double that of the wild-type domain. The folding rate of this hyperstable mutant was 10-fold faster than wild-type, while its unfolding rate was fivefold slower. All of the stabilized mutants were still able to bind a target peptide with wild-type affinity. We have analyzed the stabilizing amino acid substitutions isolated in this study and several other similar sequence alignment based studies. In approximately 25% of cases, increased stability can be explained by enhanced propensity of the substituted residue for the local backbone conformation at the mutagenized site.
Full Text
The Full Text of this article is available as a PDF (507.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander P., Fahnestock S., Lee T., Orban J., Bryan P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry. 1992 Apr 14;31(14):3597–3603. doi: 10.1021/bi00129a007. [DOI] [PubMed] [Google Scholar]
- Bhandari P., Gowrishankar J. An Escherichia coli host strain useful for efficient overproduction of cloned gene products with NaCl as the inducer. J Bacteriol. 1997 Jul;179(13):4403–4406. doi: 10.1128/jb.179.13.4403-4406.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowie J. U., Lüthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991 Jul 12;253(5016):164–170. doi: 10.1126/science.1853201. [DOI] [PubMed] [Google Scholar]
- Bystroff C., Baker D. Prediction of local structure in proteins using a library of sequence-structure motifs. J Mol Biol. 1998 Aug 21;281(3):565–577. doi: 10.1006/jmbi.1998.1943. [DOI] [PubMed] [Google Scholar]
- Chen Y. J., Lin S. C., Tzeng S. R., Patel H. V., Lyu P. C., Cheng J. W. Stability and folding of the SH3 domain of Bruton's tyrosine kinase. Proteins. 1996 Dec;26(4):465–471. doi: 10.1002/(SICI)1097-0134(199612)26:4<465::AID-PROT7>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- Dalgarno D. C., Botfield M. C., Rickles R. J. SH3 domains and drug design: ligands, structure, and biological function. Biopolymers. 1997;43(5):383–400. doi: 10.1002/(SICI)1097-0282(1997)43:5<383::AID-BIP4>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Drubin D. G., Mulholland J., Zhu Z. M., Botstein D. Homology of a yeast actin-binding protein to signal transduction proteins and myosin-I. Nature. 1990 Jan 18;343(6255):288–290. doi: 10.1038/343288a0. [DOI] [PubMed] [Google Scholar]
- Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
- Filimonov V. V., Azuaga A. I., Viguera A. R., Serrano L., Mateo P. L. A thermodynamic analysis of a family of small globular proteins: SH3 domains. Biophys Chem. 1999 Mar 29;77(2-3):195–208. doi: 10.1016/s0301-4622(99)00025-3. [DOI] [PubMed] [Google Scholar]
- Freeman N. L., Chen Z., Horenstein J., Weber A., Field J. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. J Biol Chem. 1995 Mar 10;270(10):5680–5685. doi: 10.1074/jbc.270.10.5680. [DOI] [PubMed] [Google Scholar]
- Gorina S., Pavletich N. P. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science. 1996 Nov 8;274(5289):1001–1005. doi: 10.1126/science.274.5289.1001. [DOI] [PubMed] [Google Scholar]
- Grantcharova V. P., Baker D. Folding dynamics of the src SH3 domain. Biochemistry. 1997 Dec 16;36(50):15685–15692. doi: 10.1021/bi971786p. [DOI] [PubMed] [Google Scholar]
- Grantcharova V. P., Riddle D. S., Santiago J. V., Baker D. Important role of hydrogen bonds in the structurally polarized transition state for folding of the src SH3 domain. Nat Struct Biol. 1998 Aug;5(8):714–720. doi: 10.1038/1412. [DOI] [PubMed] [Google Scholar]
- Hakak Y., Martin G. S. Ubiquitin-dependent degradation of active Src. Curr Biol. 1999 Sep 23;9(18):1039–1042. doi: 10.1016/s0960-9822(99)80453-9. [DOI] [PubMed] [Google Scholar]
- Hecht M. H., Sturtevant J. M., Sauer R. T. Stabilization of lambda repressor against thermal denaturation by site-directed Gly----Ala changes in alpha-helix 3. Proteins. 1986 Sep;1(1):43–46. doi: 10.1002/prot.340010108. [DOI] [PubMed] [Google Scholar]
- Hendsch Z. S., Jonsson T., Sauer R. T., Tidor B. Protein stabilization by removal of unsatisfied polar groups: computational approaches and experimental tests. Biochemistry. 1996 Jun 18;35(24):7621–7625. doi: 10.1021/bi9605191. [DOI] [PubMed] [Google Scholar]
- Hutchinson E. G., Thornton J. M. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 1994 Dec;3(12):2207–2216. doi: 10.1002/pro.5560031206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue I., Rechsteiner M. On the relationship between the metabolic and thermodynamic stabilities of T4 lysozymes. Measurements in Escherichia coli. J Biol Chem. 1994 Nov 18;269(46):29241–29246. [PubMed] [Google Scholar]
- Jackson S. E., Fersht A. R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry. 1991 Oct 29;30(43):10428–10435. doi: 10.1021/bi00107a010. [DOI] [PubMed] [Google Scholar]
- Kawamura S., Abe Y., Ueda T., Masumoto K., Imoto T., Yamasaki N., Kimura M. Investigation of the structural basis for thermostability of DNA-binding protein HU from Bacillus stearothermophilus. J Biol Chem. 1998 Aug 7;273(32):19982–19987. doi: 10.1074/jbc.273.32.19982. [DOI] [PubMed] [Google Scholar]
- Kawamura S., Kakuta Y., Tanaka I., Hikichi K., Kuhara S., Yamasaki N., Kimura M. Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilus. Biochemistry. 1996 Jan 30;35(4):1195–1200. doi: 10.1021/bi951581l. [DOI] [PubMed] [Google Scholar]
- Kimura S., Kanaya S., Nakamura H. Thermostabilization of Escherichia coli ribonuclease HI by replacing left-handed helical Lys95 with Gly or Asn. J Biol Chem. 1992 Nov 5;267(31):22014–22017. [PubMed] [Google Scholar]
- Kirino H., Aoki M., Aoshima M., Hayashi Y., Ohba M., Yamagishi A., Wakagi T., Oshima T. Hydrophobic interaction at the subunit interface contributes to the thermostability of 3-isopropylmalate dehydrogenase from an extreme thermophile, Thermus thermophilus. Eur J Biochem. 1994 Feb 15;220(1):275–281. doi: 10.1111/j.1432-1033.1994.tb18623.x. [DOI] [PubMed] [Google Scholar]
- Knapp S., Mattson P. T., Christova P., Berndt K. D., Karshikoff A., Vihinen M., Smith C. I., Ladenstein R. Thermal unfolding of small proteins with SH3 domain folding pattern. Proteins. 1998 May 15;31(3):309–319. doi: 10.1002/(sici)1097-0134(19980515)31:3<309::aid-prot7>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Koepp D. M., Harper J. W., Elledge S. J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell. 1999 May 14;97(4):431–434. doi: 10.1016/s0092-8674(00)80753-9. [DOI] [PubMed] [Google Scholar]
- Kohda D., Hatanaka H., Odaka M., Mandiyan V., Ullrich A., Schlessinger J., Inagaki F. Solution structure of the SH3 domain of phospholipase C-gamma. Cell. 1993 Mar 26;72(6):953–960. doi: 10.1016/0092-8674(93)90583-c. [DOI] [PubMed] [Google Scholar]
- Kuipers O. P., Boot H. J., de Vos W. M. Improved site-directed mutagenesis method using PCR. Nucleic Acids Res. 1991 Aug 25;19(16):4558–4558. doi: 10.1093/nar/19.16.4558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lila T., Drubin D. G. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol Biol Cell. 1997 Feb;8(2):367–385. doi: 10.1091/mbc.8.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim W. A., Fox R. O., Richards F. M. Stability and peptide binding affinity of an SH3 domain from the Caenorhabditis elegans signaling protein Sem-5. Protein Sci. 1994 Aug;3(8):1261–1266. doi: 10.1002/pro.5560030812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim W. A., Richards F. M., Fox R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature. 1994 Nov 24;372(6504):375–379. doi: 10.1038/372375a0. [DOI] [PubMed] [Google Scholar]
- Martinez J. C., Pisabarro M. T., Serrano L. Obligatory steps in protein folding and the conformational diversity of the transition state. Nat Struct Biol. 1998 Aug;5(8):721–729. doi: 10.1038/1418. [DOI] [PubMed] [Google Scholar]
- Matsumura M., Signor G., Matthews B. W. Substantial increase of protein stability by multiple disulphide bonds. Nature. 1989 Nov 16;342(6247):291–293. doi: 10.1038/342291a0. [DOI] [PubMed] [Google Scholar]
- Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxwell K. L., Davidson A. R. Mutagenesis of a buried polar interaction in an SH3 domain: sequence conservation provides the best prediction of stability effects. Biochemistry. 1998 Nov 17;37(46):16172–16182. doi: 10.1021/bi981788p. [DOI] [PubMed] [Google Scholar]
- Nikolova P. V., Henckel J., Lane D. P., Fersht A. R. Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14675–14680. doi: 10.1073/pnas.95.25.14675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsell D. A., Sauer R. T. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J Biol Chem. 1989 May 5;264(13):7590–7595. [PubMed] [Google Scholar]
- Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
- Plaxco K. W., Guijarro J. I., Morton C. J., Pitkeathly M., Campbell I. D., Dobson C. M. The folding kinetics and thermodynamics of the Fyn-SH3 domain. Biochemistry. 1998 Feb 24;37(8):2529–2537. doi: 10.1021/bi972075u. [DOI] [PubMed] [Google Scholar]
- Politou A. S., Millevoi S., Gautel M., Kolmerer B., Pastore A. SH3 in muscles: solution structure of the SH3 domain from nebulin. J Mol Biol. 1998 Feb 13;276(1):189–202. doi: 10.1006/jmbi.1997.1521. [DOI] [PubMed] [Google Scholar]
- Querol E., Perez-Pons J. A., Mozo-Villarias A. Analysis of protein conformational characteristics related to thermostability. Protein Eng. 1996 Mar;9(3):265–271. doi: 10.1093/protein/9.3.265. [DOI] [PubMed] [Google Scholar]
- Russell R. J., Taylor G. L. Engineering thermostability: lessons from thermophilic proteins. Curr Opin Biotechnol. 1995 Aug;6(4):370–374. doi: 10.1016/0958-1669(95)80064-6. [DOI] [PubMed] [Google Scholar]
- Salvat C., Aquaviva C., Jariel-Encontre I., Ferrara P., Pariat M., Steff A. M., Carillo S., Piechaczyk M. Are there multiple proteolytic pathways contributing to c-Fos, c-Jun and p53 protein degradation in vivo? Mol Biol Rep. 1999 Apr;26(1-2):45–51. doi: 10.1023/a:1006960021281. [DOI] [PubMed] [Google Scholar]
- Sauer R. T., Hehir K., Stearman R. S., Weiss M. A., Jeitler-Nilsson A., Suchanek E. G., Pabo C. O. An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of lambda repressor. Biochemistry. 1986 Oct 7;25(20):5992–5998. doi: 10.1021/bi00368a024. [DOI] [PubMed] [Google Scholar]
- Serrano L., Day A. G., Fersht A. R. Step-wise mutation of barnase to binase. A procedure for engineering increased stability of proteins and an experimental analysis of the evolution of protein stability. J Mol Biol. 1993 Sep 20;233(2):305–312. doi: 10.1006/jmbi.1993.1508. [DOI] [PubMed] [Google Scholar]
- Sondhi D., Cole P. A. Domain interactions in protein tyrosine kinase Csk. Biochemistry. 1999 Aug 24;38(34):11147–11155. doi: 10.1021/bi990827+. [DOI] [PubMed] [Google Scholar]
- Steipe B., Schiller B., Plückthun A., Steinbacher S. Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol. 1994 Jul 15;240(3):188–192. doi: 10.1006/jmbi.1994.1434. [DOI] [PubMed] [Google Scholar]
- Takagi H., Takahashi T., Momose H., Inouye M., Maeda Y., Matsuzawa H., Ohta T. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J Biol Chem. 1990 Apr 25;265(12):6874–6878. [PubMed] [Google Scholar]
- Vidal M., Montiel J. L., Cussac D., Cornille F., Duchesne M., Parker F., Tocqué B., Roques B. P., Garbay C. Differential interactions of the growth factor receptor-bound protein 2 N-SH3 domain with son of sevenless and dynamin. Potential role in the Ras-dependent signaling pathway. J Biol Chem. 1998 Feb 27;273(9):5343–5348. doi: 10.1074/jbc.273.9.5343. [DOI] [PubMed] [Google Scholar]
- Wang Q., Buckle A. M., Foster N. W., Johnson C. M., Fersht A. R. Design of highly stable functional GroEL minichaperones. Protein Sci. 1999 Oct;8(10):2186–2193. doi: 10.1110/ps.8.10.2186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wirtz P., Steipe B. Intrabody construction and expression III: engineering hyperstable V(H) domains. Protein Sci. 1999 Nov;8(11):2245–2250. doi: 10.1110/ps.8.11.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yi Q., Bystroff C., Rajagopal P., Klevit R. E., Baker D. Prediction and structural characterization of an independently folding substructure in the src SH3 domain. J Mol Biol. 1998;283(1):293–300. doi: 10.1006/jmbi.1998.2072. [DOI] [PubMed] [Google Scholar]