Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Dec;9(12):2446–2456. doi: 10.1110/ps.9.12.2446

Resonant mirror biosensor analysis of type Ialpha cAMP-dependent protein kinase B domain--cyclic nucleotide interactions.

W W Muhonen 1, J B Shabb 1
PMCID: PMC2144508  PMID: 11206066

Abstract

A resonant mirror biosensor was used to study cyclic nucleotide-receptor interactions. In particular, a novel method was developed to determine inhibition constants (Ki) from initial rates of ligate association to immobilized ligand. This approach was applied to the comparison of cyclic nucleotide-binding properties of the wild-type isolated B domain of the cAMP-dependent protein kinase type Ialpha regulatory subunit and its Ala-334-Thr (A334T) variant that has altered cyclic nucleotide specificity. A cUMP-saturated form of the B domain was used for all measurements. Under the conditions used, cUMP did not affect the kinetics of B domain association to immobilized cAMP. Triton X-100 was required to stabilize the protein at nanomolar concentrations. The association and dissociation rate constants for wild-type and A334T B domains yielded equilibrium dissociation constants of 11 and 16 nM. Heterogeneity of ligate and immobilized ligand, mass transport effects, and other factors were evaluated for their influence on biosensor-determined kinetic constants. Biosensor-determined relative inhibition constants (Ki' = Ki(cAMP)/Ki(analog)) for 16 cyclic nucleotide analogs correlated well with those determined by a [3H]cAMP binding assay. Previously published Ki' values for the B domain in the intact regulatory subunit were similar to those of the isolated B domain. The Ki' values for the wild-type and A334T B domains were essentially unchanged except for dramatic enhancements in affinity of cGMP analogs for the A334T B domain. These observations validate the isolated B domain as a simple model system for studying cyclic nucleotide-receptor interactions.

Full Text

The Full Text of this article is available as a PDF (660.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenhofen W., Ludwig J., Eismann E., Kraus W., Bönigk W., Kaupp U. B. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9868–9872. doi: 10.1073/pnas.88.21.9868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowles M. R., Hall D. R., Pond S. M., Winzor D. J. Studies of protein interactions by biosensor technology: an alternative approach to the analysis of sensorgrams deviating from pseudo-first-order kinetic behavior. Anal Biochem. 1997 Jan 1;244(1):133–143. doi: 10.1006/abio.1996.9888. [DOI] [PubMed] [Google Scholar]
  3. Dills W. L., Goodwin C. D., Lincoln T. M., Beavo J. A., Bechtel P. J., Corbin J. D., Krebs E. G. Purification of cyclic nucleotide receptor proteins by cyclic nucleotide affinity chromatography. Adv Cyclic Nucleotide Res. 1979;10:199–217. [PubMed] [Google Scholar]
  4. Døskeland S. O., Ogreid D. Characterization of the interchain and intrachain interactions between the binding sites of the free regulatory moiety of protein kinase I. J Biol Chem. 1984 Feb 25;259(4):2291–2301. [PubMed] [Google Scholar]
  5. Døskeland S. O., Ogreid D., Ekanger R., Sturm P. A., Miller J. P., Suva R. H. Mapping of the two intrachain cyclic nucleotide binding sites of adenosine cyclic 3',5'-phosphate dependent protein kinase I. Biochemistry. 1983 Mar 1;22(5):1094–1101. doi: 10.1021/bi00274a016. [DOI] [PubMed] [Google Scholar]
  6. Edwards P. R., Gill A., Pollard-Knight D. V., Hoare M., Buckle P. E., Lowe P. A., Leatherbarrow R. J. Kinetics of protein-protein interactions at the surface of an optical biosensor. Anal Biochem. 1995 Oct 10;231(1):210–217. doi: 10.1006/abio.1995.1522. [DOI] [PubMed] [Google Scholar]
  7. Edwards P. R., Leatherbarrow R. J. Determination of association rate constants by an optical biosensor using initial rate analysis. Anal Biochem. 1997 Mar 1;246(1):1–6. doi: 10.1006/abio.1996.9922. [DOI] [PubMed] [Google Scholar]
  8. Hall D. R., Gorgani N. N., Altin J. G., Winzor D. J. Theoretical and experimental considerations of the pseudo-first-order approximation in conventional kinetic analysis of IAsys biosensor data. Anal Biochem. 1997 Nov 15;253(2):145–155. doi: 10.1006/abio.1997.2358. [DOI] [PubMed] [Google Scholar]
  9. Hall D. R., Winzor D. J. Potential of biosensor technology for the characterization of interactions by quantitative affinity chromatography. J Chromatogr B Biomed Sci Appl. 1998 Sep 11;715(1):163–181. doi: 10.1016/s0378-4347(97)00649-x. [DOI] [PubMed] [Google Scholar]
  10. Hall D. R., Winzor D. J. Use of a resonant mirror biosensor to characterize the interaction of carboxypeptidase A with an elicited monoclonal antibody. Anal Biochem. 1997 Jan 1;244(1):152–160. doi: 10.1006/abio.1996.9867. [DOI] [PubMed] [Google Scholar]
  11. Herberg F. W., Maleszka A., Eide T., Vossebein L., Tasken K. Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding. J Mol Biol. 2000 Apr 28;298(2):329–339. doi: 10.1006/jmbi.2000.3662. [DOI] [PubMed] [Google Scholar]
  12. Kalinin N. L., Ward L. D., Winzor D. J. Effects of solute multivalence on the evaluation of binding constants by biosensor technology: studies with concanavalin A and interleukin-6 as partitioning proteins. Anal Biochem. 1995 Jul 1;228(2):238–244. doi: 10.1006/abio.1995.1345. [DOI] [PubMed] [Google Scholar]
  13. Kapphahn M. A., Shabb J. B. Contribution of the carboxyl-terminal regional of the cAMP-dependent protein kinase type I alpha regulatory subunit to cyclic nucleotide interactions. Arch Biochem Biophys. 1997 Dec 15;348(2):347–356. doi: 10.1006/abbi.1997.0431. [DOI] [PubMed] [Google Scholar]
  14. Karlsson R., Fägerstam L., Nilshans H., Persson B. Analysis of active antibody concentration. Separation of affinity and concentration parameters. J Immunol Methods. 1993 Nov 5;166(1):75–84. doi: 10.1016/0022-1759(93)90330-a. [DOI] [PubMed] [Google Scholar]
  15. Karlsson R. Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptors. Anal Biochem. 1994 Aug 15;221(1):142–151. doi: 10.1006/abio.1994.1390. [DOI] [PubMed] [Google Scholar]
  16. Krstulovic A. M., Hartwick R. A., Brown P. R. Reversed-phase liquid chromatographic separation of 3',5'-cyclic ribonucleotides. Clin Chem. 1979 Feb;25(2):235–241. [PubMed] [Google Scholar]
  17. Morelock M. M., Ingraham R. H., Betageri R., Jakes S. Determination of receptor-ligand kinetic and equilibrium binding constants using surface plasmon resonance: application to the lck SH2 domain and phosphotyrosyl peptides. J Med Chem. 1995 Apr 14;38(8):1309–1318. doi: 10.1021/jm00008a009. [DOI] [PubMed] [Google Scholar]
  18. Myszka D. G., Morton T. A., Doyle M. L., Chaiken I. M. Kinetic analysis of a protein antigen-antibody interaction limited by mass transport on an optical biosensor. Biophys Chem. 1997 Feb 28;64(1-3):127–137. doi: 10.1016/s0301-4622(96)02230-2. [DOI] [PubMed] [Google Scholar]
  19. Nieba L., Krebber A., Plückthun A. Competition BIAcore for measuring true affinities: large differences from values determined from binding kinetics. Anal Biochem. 1996 Feb 15;234(2):155–165. doi: 10.1006/abio.1996.0067. [DOI] [PubMed] [Google Scholar]
  20. O'Shannessy D. J., Winzor D. J. Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology. Anal Biochem. 1996 May 1;236(2):275–283. doi: 10.1006/abio.1996.0167. [DOI] [PubMed] [Google Scholar]
  21. Ogreid D., Ekanger R., Suva R. H., Miller J. P., Døskeland S. O. Comparison of the two classes of binding sites (A and B) of type I and type II cyclic-AMP-dependent protein kinases by using cyclic nucleotide analogs. Eur J Biochem. 1989 Apr 15;181(1):19–31. doi: 10.1111/j.1432-1033.1989.tb14689.x. [DOI] [PubMed] [Google Scholar]
  22. Rannels S. R., Corbin J. D. Two different intrachain cAMP binding sites of cAMP-dependent protein kinases. J Biol Chem. 1980 Aug 10;255(15):7085–7088. [PubMed] [Google Scholar]
  23. Reed R. B., Sandberg M., Jahnsen T., Lohmann S. M., Francis S. H., Corbin J. D. Fast and slow cyclic nucleotide-dissociation sites in cAMP-dependent protein kinase are transposed in type Ibeta cGMP-dependent protein kinase. J Biol Chem. 1996 Jul 19;271(29):17570–17575. doi: 10.1074/jbc.271.29.17570. [DOI] [PubMed] [Google Scholar]
  24. Schuck P., Minton A. P. Analysis of mass transport-limited binding kinetics in evanescent wave biosensors. Anal Biochem. 1996 Sep 5;240(2):262–272. doi: 10.1006/abio.1996.0356. [DOI] [PubMed] [Google Scholar]
  25. Schuck P., Minton A. P. Kinetic analysis of biosensor data: elementary tests for self-consistency. Trends Biochem Sci. 1996 Dec;21(12):458–460. doi: 10.1016/s0968-0004(96)20025-8. [DOI] [PubMed] [Google Scholar]
  26. Schuck P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct. 1997;26:541–566. doi: 10.1146/annurev.biophys.26.1.541. [DOI] [PubMed] [Google Scholar]
  27. Shabb J. B., Buzzeo B. D., Ng L., Corbin J. D. Mutating protein kinase cAMP-binding sites into cGMP-binding sites. Mechanism of cGMP selectivity. J Biol Chem. 1991 Dec 25;266(36):24320–24326. [PubMed] [Google Scholar]
  28. Shabb J. B., Corbin J. D. Cyclic nucleotide-binding domains in proteins having diverse functions. J Biol Chem. 1992 Mar 25;267(9):5723–5726. [PubMed] [Google Scholar]
  29. Shabb J. B., Ng L., Corbin J. D. One amino acid change produces a high affinity cGMP-binding site in cAMP-dependent protein kinase. J Biol Chem. 1990 Sep 25;265(27):16031–16034. [PubMed] [Google Scholar]
  30. Shabb J. B., Poteet C. E., Kapphahn M. A., Muhonen W. M., Baker N. E., Corbin J. D. Characterization of the isolated cAMP-binding B domain of cAMP-dependent protein kinase. Protein Sci. 1995 Oct;4(10):2100–2106. doi: 10.1002/pro.5560041015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Su Y., Dostmann W. R., Herberg F. W., Durick K., Xuong N. H., Ten Eyck L., Taylor S. S., Varughese K. I. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science. 1995 Aug 11;269(5225):807–813. doi: 10.1126/science.7638597. [DOI] [PubMed] [Google Scholar]
  32. de Wit R. J., Hoppe J., Stec W. J., Baraniak J., Jastorff B. Interaction of cAMP derivatives with the 'stable' cAMP-binding site in the cAMP-dependent protein kinase type I. Eur J Biochem. 1982 Feb;122(1):95–99. doi: 10.1111/j.1432-1033.1982.tb05852.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES