Abstract
Orthologs typically retain the same function in the course of evolution. Using beta-decarboxylating dehydrogenase family as a model, we demonstrate that orthologs can be confidently identified. The strategy is based on our recent findings that substitutions of only a few amino acid residues in these enzymes are sufficient to exchange substrate and coenzyme specificities. Hence, the few major specificity determinants can serve as reliable markers for determining orthologous or paralogous relationships. The power of this approach has been demonstrated by correcting similarity-based functional misassignment and discovering new genes and related pathways, and should be broadly applicable to other enzyme families.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babbitt P. C., Mrachko G. T., Hasson M. S., Huisman G. W., Kolter R., Ringe D., Petsko G. A., Kenyon G. L., Gerlt J. A. A functionally diverse enzyme superfamily that abstracts the alpha protons of carboxylic acids. Science. 1995 Feb 24;267(5201):1159–1161. doi: 10.1126/science.7855594. [DOI] [PubMed] [Google Scholar]
- Bolduc J. M., Dyer D. H., Scott W. G., Singer P., Sweet R. M., Koshland D. E., Jr, Stoddard B. L. Mutagenesis and Laue structures of enzyme intermediates: isocitrate dehydrogenase. Science. 1995 Jun 2;268(5215):1312–1318. doi: 10.1126/science.7761851. [DOI] [PubMed] [Google Scholar]
- Chen R. A general strategy for enzyme engineering. Trends Biotechnol. 1999 Sep;17(9):344–345. doi: 10.1016/s0167-7799(99)01324-4. [DOI] [PubMed] [Google Scholar]
- Chen R., Greer A. F., Dean A. M. Structural constraints in protein engineering--the coenzyme specificity of Escherichia coli isocitrate dehydrogenase. Eur J Biochem. 1997 Dec 1;250(2):578–582. doi: 10.1111/j.1432-1033.1997.0578a.x. [DOI] [PubMed] [Google Scholar]
- Chen R., Greer A., Dean A. M. A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11666–11670. doi: 10.1073/pnas.92.25.11666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen R., Greer A., Dean A. M. Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12171–12176. doi: 10.1073/pnas.93.22.12171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen R., Grobler J. A., Hurley J. H., Dean A. M. Second-site suppression of regulatory phosphorylation in Escherichia coli isocitrate dehydrogenase. Protein Sci. 1996 Feb;5(2):287–295. doi: 10.1002/pro.5560050213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cupp J. R., McAlister-Henn L. Kinetic analysis of NAD(+)-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis. Biochemistry. 1993 Sep 14;32(36):9323–9328. doi: 10.1021/bi00087a010. [DOI] [PubMed] [Google Scholar]
- Dean A. M., Dvorak L. The role of glutamate 87 in the kinetic mechanism of Thermus thermophilus isopropylmalate dehydrogenase. Protein Sci. 1995 Oct;4(10):2156–2167. doi: 10.1002/pro.5560041022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean A. M., Shiau A. K., Koshland D. E., Jr Determinants of performance in the isocitrate dehydrogenase of Escherichia coli. Protein Sci. 1996 Feb;5(2):341–347. doi: 10.1002/pro.5560050218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deckert G., Warren P. V., Gaasterland T., Young W. G., Lenox A. L., Graham D. E., Overbeek R., Snead M. A., Keller M., Aujay M. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature. 1998 Mar 26;392(6674):353–358. doi: 10.1038/32831. [DOI] [PubMed] [Google Scholar]
- Ellerström M., Josefsson L. G., Rask L., Ronne H. Cloning of a cDNA for rape chloroplast 3-isopropylmalate dehydrogenase by genetic complementation in yeast. Plant Mol Biol. 1992 Feb;18(3):557–566. doi: 10.1007/BF00040671. [DOI] [PubMed] [Google Scholar]
- Henikoff S., Greene E. A., Pietrokovski S., Bork P., Attwood T. K., Hood L. Gene families: the taxonomy of protein paralogs and chimeras. Science. 1997 Oct 24;278(5338):609–614. doi: 10.1126/science.278.5338.609. [DOI] [PubMed] [Google Scholar]
- Hohlfeld M., Veit M., Strack D. Hydroxycinnamoyltransferases Involved in the Accumulation of Caffeic Acid Esters in Gametophytes and Sporophytes of Equisetum arvense. Plant Physiol. 1996 Aug;111(4):1153–1159. doi: 10.1104/pp.111.4.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurley J. H., Chen R., Dean A. M. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant. Biochemistry. 1996 May 7;35(18):5670–5678. doi: 10.1021/bi953001q. [DOI] [PubMed] [Google Scholar]
- Hurley J. H., Dean A. M., Koshland D. E., Jr, Stroud R. M. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry. 1991 Sep 3;30(35):8671–8678. doi: 10.1021/bi00099a026. [DOI] [PubMed] [Google Scholar]
- Hurley J. H., Thorsness P. E., Ramalingam V., Helmers N. H., Koshland D. E., Jr, Stroud R. M. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8635–8639. doi: 10.1073/pnas.86.22.8635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imada K., Sato M., Tanaka N., Katsube Y., Matsuura Y., Oshima T. Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol. 1991 Dec 5;222(3):725–738. doi: 10.1016/0022-2836(91)90508-4. [DOI] [PubMed] [Google Scholar]
- Jackson S. D., Sonnewald U., Willmitzer L. Cloning and expression analysis of beta-isopropylmalate dehydrogenase from potato. Mol Gen Genet. 1993 Jan;236(2-3):309–314. doi: 10.1007/BF00277127. [DOI] [PubMed] [Google Scholar]
- Jensen R. A. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976;30:409–425. doi: 10.1146/annurev.mi.30.100176.002205. [DOI] [PubMed] [Google Scholar]
- Keys D. A., McAlister-Henn L. Subunit structure, expression, and function of NAD(H)-specific isocitrate dehydrogenase in Saccharomyces cerevisiae. J Bacteriol. 1990 Aug;172(8):4280–4287. doi: 10.1128/jb.172.8.4280-4287.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lancien M., Gadal P., Hodges M. Molecular characterization of higher plant NAD-dependent isocitrate dehydrogenase: evidence for a heteromeric structure by the complementation of yeast mutants. Plant J. 1998 Nov;16(3):325–333. doi: 10.1046/j.1365-313x.1998.00305.x. [DOI] [PubMed] [Google Scholar]
- Nichols B. J., Perry A. C., Hall L., Denton R. M. Molecular cloning and deduced amino acid sequences of the alpha- and beta- subunits of mammalian NAD(+)-isocitrate dehydrogenase. Biochem J. 1995 Sep 15;310(Pt 3):917–922. doi: 10.1042/bj3100917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramachandran N., Colman R. F. Chemical characterization of distinct subunits of pig heart DPN-specific isocitrate dehydrogenase. J Biol Chem. 1980 Sep 25;255(18):8859–8864. [PubMed] [Google Scholar]
- Rossmann M. G., Moras D., Olsen K. W. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974 Jul 19;250(463):194–199. doi: 10.1038/250194a0. [DOI] [PubMed] [Google Scholar]
- Rutter G. A., Denton R. M. The binding of Ca2+ ions to pig heart NAD+-isocitrate dehydrogenase and the 2-oxoglutarate dehydrogenase complex. Biochem J. 1989 Oct 15;263(2):453–462. doi: 10.1042/bj2630453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serfozo P., Tipton P. A. Substrate determinants of the course of tartrate dehydrogenase-catalyzed reactions. Biochemistry. 1995 Jun 6;34(22):7517–7524. doi: 10.1021/bi00022a027. [DOI] [PubMed] [Google Scholar]
- Stoddard B. L., Dean A., Koshland D. E., Jr Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5-A resolution: a pseudo-Michaelis ternary complex. Biochemistry. 1993 Sep 14;32(36):9310–9316. doi: 10.1021/bi00087a008. [DOI] [PubMed] [Google Scholar]
- Tatusov R. L., Koonin E. V., Lipman D. J. A genomic perspective on protein families. Science. 1997 Oct 24;278(5338):631–637. doi: 10.1126/science.278.5338.631. [DOI] [PubMed] [Google Scholar]
- Tipton P. A., Beecher B. S. Tartrate dehydrogenase, a new member of the family of metal-dependent decarboxylating R-hydroxyacid dehydrogenases. Arch Biochem Biophys. 1994 Aug 15;313(1):15–21. doi: 10.1006/abbi.1994.1352. [DOI] [PubMed] [Google Scholar]
- Wilks H. M., Hart K. W., Feeney R., Dunn C. R., Muirhead H., Chia W. N., Barstow D. A., Atkinson T., Clarke A. R., Holbrook J. J. A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science. 1988 Dec 16;242(4885):1541–1544. doi: 10.1126/science.3201242. [DOI] [PubMed] [Google Scholar]
- Yaoi T., Miyazaki K., Oshima T. Substrate recognition of isocitrate dehydrogenase and 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8. J Biochem. 1997 Jan;121(1):77–81. doi: 10.1093/oxfordjournals.jbchem.a021573. [DOI] [PubMed] [Google Scholar]