Abstract
A right-handed parallel beta-helix of 400 residues in 13 tightly packed coils is a major motif of the chains forming the trimeric P22 tailspike adhesin. The beta-helix domains of three identical subunits are side-by-side in the trimer and make predominantly hydrophilic inter-subunit contacts (Steinbacher S et al., 1994, Science 265:383-386). After the 13th coil the three individual beta-helices terminate and the chains wrap around each other to form three interdigitated beta-sheets organized into the walls of a triangular prism. The beta-strands then separate and form antiparallel beta-sheets, but still defining a triangular prism in which each side is a beta-sheet from a different subunit (Seckler R, 1998, J Struct Biol 122:216-222). The subunit interfaces are buried in the triangular core of the prism, which is densely packed with hydrophobic side chains from the three beta-sheets. Examination of this structure reveals that its packed core maintains the same pattern of interior packing found in the left-handed beta-helix, a single-chain structure. This packing is maintained in both the interdigitated parallel region of the prism and the following antiparallel sheet section. This oligomerization motif for the tailspike beta-helices presumably contributes to the very high thermal and detergent stability that is a property of the native tailspike adhesin.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beaman T. W., Binder D. A., Blanchard J. S., Roderick S. L. Three-dimensional structure of tetrahydrodipicolinate N-succinyltransferase. Biochemistry. 1997 Jan 21;36(3):489–494. doi: 10.1021/bi962522q. [DOI] [PubMed] [Google Scholar]
- Beaman T. W., Sugantino M., Roderick S. L. Structure of the hexapeptide xenobiotic acetyltransferase from Pseudomonas aeruginosa. Biochemistry. 1998 May 12;37(19):6689–6696. doi: 10.1021/bi980106v. [DOI] [PubMed] [Google Scholar]
- Betts S. D., King J. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation. Protein Sci. 1998 Jul;7(7):1516–1523. doi: 10.1002/pro.5560070704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betts S., King J. There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure. 1999 Jun 15;7(6):R131–R139. doi: 10.1016/s0969-2126(99)80078-1. [DOI] [PubMed] [Google Scholar]
- Blake C., Serpell L. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure. 1996 Aug 15;4(8):989–998. doi: 10.1016/s0969-2126(96)00104-9. [DOI] [PubMed] [Google Scholar]
- Bourne Y., Zamboni V., Barre A., Peumans W. J., Van Damme E. J., Rougé P. Helianthus tuberosus lectin reveals a widespread scaffold for mannose-binding lectins. Structure. 1999 Dec 15;7(12):1473–1482. doi: 10.1016/s0969-2126(00)88338-0. [DOI] [PubMed] [Google Scholar]
- Breg J. N., van Opheusden J. H., Burgering M. J., Boelens R., Kaptein R. Structure of Arc repressor in solution: evidence for a family of beta-sheet DNA-binding proteins. Nature. 1990 Aug 9;346(6284):586–589. doi: 10.1038/346586a0. [DOI] [PubMed] [Google Scholar]
- Brunschier R., Danner M., Seckler R. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J Biol Chem. 1993 Feb 5;268(4):2767–2772. [PubMed] [Google Scholar]
- Chen B., King J. Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry. 1991 Jun 25;30(25):6260–6269. doi: 10.1021/bi00239a026. [DOI] [PubMed] [Google Scholar]
- Choudhury D., Thompson A., Stojanoff V., Langermann S., Pinkner J., Hultgren S. J., Knight S. D. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science. 1999 Aug 13;285(5430):1061–1066. doi: 10.1126/science.285.5430.1061. [DOI] [PubMed] [Google Scholar]
- Danner M., Seckler R. Mechanism of phage P22 tailspike protein folding mutations. Protein Sci. 1993 Nov;2(11):1869–1881. doi: 10.1002/pro.5560021109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emsley P., Charles I. G., Fairweather N. F., Isaacs N. W. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature. 1996 May 2;381(6577):90–92. doi: 10.1038/381090a0. [DOI] [PubMed] [Google Scholar]
- Goldenberg D., King J. Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endorhamnosidase of bacteriophage P22. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3403–3407. doi: 10.1073/pnas.79.11.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
- Haase-Pettingell C. A., King J. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J Biol Chem. 1988 Apr 5;263(10):4977–4983. [PubMed] [Google Scholar]
- Haase-Pettingell C., King J. Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase. J Mol Biol. 1997 Mar 21;267(1):88–102. doi: 10.1006/jmbi.1996.0841. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A., Steinrauf L. K., Braden B. C., Liepnieks J., Benson M. D., Holmgren G., Sandgren O., Steen L. The x-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30-->Met variant to 1.7-A resolution. J Biol Chem. 1993 Feb 5;268(4):2416–2424. [PubMed] [Google Scholar]
- Heffron S., Moe G. R., Sieber V., Mengaud J., Cossart P., Vitali J., Jurnak F. Sequence profile of the parallel beta helix in the pectate lyase superfamily. J Struct Biol. 1998;122(1-2):223–235. doi: 10.1006/jsbi.1998.3978. [DOI] [PubMed] [Google Scholar]
- Huang W., Matte A., Li Y., Kim Y. S., Linhardt R. J., Su H., Cygler M. Crystal structure of chondroitinase B from Flavobacterium heparinum and its complex with a disaccharide product at 1.7 A resolution. J Mol Biol. 1999 Dec 17;294(5):1257–1269. doi: 10.1006/jmbi.1999.3292. [DOI] [PubMed] [Google Scholar]
- Janin J., Chothia C. The structure of protein-protein recognition sites. J Biol Chem. 1990 Sep 25;265(27):16027–16030. [PubMed] [Google Scholar]
- Jenkins J., Mayans O., Pickersgill R. Structure and evolution of parallel beta-helix proteins. J Struct Biol. 1998;122(1-2):236–246. doi: 10.1006/jsbi.1998.3985. [DOI] [PubMed] [Google Scholar]
- Kisker C., Schindelin H., Alber B. E., Ferry J. G., Rees D. C. A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J. 1996 May 15;15(10):2323–2330. [PMC free article] [PubMed] [Google Scholar]
- Lazo N. D., Downing D. T. Amyloid fibrils may be assembled from beta-helical protofibrils. Biochemistry. 1998 Feb 17;37(7):1731–1735. doi: 10.1021/bi971016d. [DOI] [PubMed] [Google Scholar]
- Lomas D. A. New insights into the structural basis of alpha 1-antitrypsin deficiency. QJM. 1996 Nov;89(11):807–812. doi: 10.1093/qjmed/89.11.807. [DOI] [PubMed] [Google Scholar]
- Mayans O., Scott M., Connerton I., Gravesen T., Benen J., Visser J., Pickersgill R., Jenkins J. Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure. 1997 May 15;5(5):677–689. doi: 10.1016/s0969-2126(97)00222-0. [DOI] [PubMed] [Google Scholar]
- McCoy A. J., Fucini P., Noegel A. A., Stewart M. Structural basis for dimerization of the Dictyostelium gelation factor (ABP120) rod. Nat Struct Biol. 1999 Sep;6(9):836–841. doi: 10.1038/12296. [DOI] [PubMed] [Google Scholar]
- Miller S. The structure of interfaces between subunits of dimeric and tetrameric proteins. Protein Eng. 1989 Nov;3(2):77–83. doi: 10.1093/protein/3.2.77. [DOI] [PubMed] [Google Scholar]
- Mitraki A., Fane B., Haase-Pettingell C., Sturtevant J., King J. Global suppression of protein folding defects and inclusion body formation. Science. 1991 Jul 5;253(5015):54–58. doi: 10.1126/science.1648264. [DOI] [PubMed] [Google Scholar]
- Pickersgill R., Harris G., Lo Leggio L., Mayans O., Jenkins J. Superfamilies: the 4/7 superfamily of beta alpha-barrel glycosidases and the right-handed parallel beta-helix superfamily. Biochem Soc Trans. 1998 May;26(2):190–198. doi: 10.1042/bst0260190. [DOI] [PubMed] [Google Scholar]
- Pickersgill R., Smith D., Worboys K., Jenkins J. Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora. J Biol Chem. 1998 Sep 18;273(38):24660–24664. doi: 10.1074/jbc.273.38.24660. [DOI] [PubMed] [Google Scholar]
- Raetz C. R., Roderick S. L. A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science. 1995 Nov 10;270(5238):997–1000. doi: 10.1126/science.270.5238.997. [DOI] [PubMed] [Google Scholar]
- Robinson A. S., King J. Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. Nat Struct Biol. 1997 Jun;4(6):450–455. doi: 10.1038/nsb0697-450. [DOI] [PubMed] [Google Scholar]
- Sargent D., Benevides J. M., Yu M. H., King J., Thomas G. J., Jr Secondary structure and thermostability of the phage P22 tailspike. XX. Analysis by Raman spectroscopy of the wild-type protein and a temperature-sensitive folding mutant. J Mol Biol. 1988 Feb 5;199(3):491–502. doi: 10.1016/0022-2836(88)90620-1. [DOI] [PubMed] [Google Scholar]
- Sauer R. T., Krovatin W., Poteete A. R., Berget P. B. Phage P22 tail protein: gene and amino acid sequence. Biochemistry. 1982 Nov 9;21(23):5811–5815. doi: 10.1021/bi00266a014. [DOI] [PubMed] [Google Scholar]
- Schlunegger M. P., Bennett M. J., Eisenberg D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv Protein Chem. 1997;50:61–122. doi: 10.1016/s0065-3233(08)60319-8. [DOI] [PubMed] [Google Scholar]
- Seckler R. Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein. J Struct Biol. 1998;122(1-2):216–222. doi: 10.1006/jsbi.1998.3974. [DOI] [PubMed] [Google Scholar]
- Shimizu T., Morikawa K. The beta-prism: a new folding motif. Trends Biochem Sci. 1996 Jan;21(1):3–6. [PubMed] [Google Scholar]
- Speed M. A., Wang D. I., King J. Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Sci. 1995 May;4(5):900–908. doi: 10.1002/pro.5560040509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbacher S., Baxa U., Miller S., Weintraub A., Seckler R., Huber R. Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10584–10588. doi: 10.1073/pnas.93.20.10584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinbacher S., Seckler R., Miller S., Steipe B., Huber R., Reinemer P. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science. 1994 Jul 15;265(5170):383–386. doi: 10.1126/science.8023158. [DOI] [PubMed] [Google Scholar]
- Sturtevant J. M., Yu M. H., Haase-Pettingell C., King J. Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein. J Biol Chem. 1989 Jun 25;264(18):10693–10698. [PubMed] [Google Scholar]
- Thomas G. J., Jr, Becka R., Sargent D., Yu M. H., King J. Conformational stability of P22 tailspike proteins carrying temperature-sensitive folding mutations. Biochemistry. 1990 May 1;29(17):4181–4187. doi: 10.1021/bi00469a022. [DOI] [PubMed] [Google Scholar]
- Wright C. S. New folds of plant lectins. Curr Opin Struct Biol. 1997 Oct;7(5):631–636. doi: 10.1016/s0959-440x(97)80071-1. [DOI] [PubMed] [Google Scholar]
- Yoder M. D., Jurnak F. Protein motifs. 3. The parallel beta helix and other coiled folds. FASEB J. 1995 Mar;9(5):335–342. doi: 10.1096/fasebj.9.5.7896002. [DOI] [PubMed] [Google Scholar]
- Yoder M. D., Keen N. T., Jurnak F. New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science. 1993 Jun 4;260(5113):1503–1507. doi: 10.1126/science.8502994. [DOI] [PubMed] [Google Scholar]