Abstract
X-linked agammaglobulinemia (XLA) is caused by mutations in the Bruton's tyrosine kinase (Btk). The absence of functional Btk leads to failure of B-cell development that incapacitates antibody production in XLA patients leading to recurrent bacterial infections. Btk SH2 domain is essential for phospholipase C-gamma phosphorylation, and mutations in this domain were shown to cause XLA. Recently, the B-cell linker protein (BLNK) was found to interact with the SH2 domain of Btk, and this association is required for the activation of phospholipase C-gamma. However, the molecular basis for the interaction between the Btk SH2 domain and BLNK and the cause of XLA remain unclear. To understand the role of Btk in B-cell development, we have determined the stability and peptide binding affinity of the Btk SH2 domain. Our results indicate that both the structure and stability of Btk SH2 domain closely resemble with other SH2 domains, and it binds with phosphopeptides in the order pYEEI > pYDEP > pYMEM > pYLDL > pYIIP. We expressed the R288Q, R288W, L295P, R307G, R307T, Y334S, Y361C, L369F, and 1370M mutants of the Btk SH2 domain identified from XLA patients and measured their binding affinity with the phosphopeptides. Our studies revealed that mutation of R288 and R307 located in the phosphotyrosine binding site resulted in a more than 200-fold decrease in the peptide binding compared to L295, Y334, Y361, L369, and 1370 mutations in the pY + 3 hydrophobic binding pocket (approximately 3- to 17-folds). Furthermore, mutation of the Tyr residue at the betaD5 position reverses the binding order of Btk SH2 domain to pYIIP > pYLDL > pYDEP > pYMEM > pYEEI. This altered binding behavior of mutant Btk SH2 domain likely leads to XLA.
Full Text
The Full Text of this article is available as a PDF (906.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baraldi E., Djinovic Carugo K., Hyvönen M., Surdo P. L., Riley A. M., Potter B. V., O'Brien R., Ladbury J. E., Saraste M. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure. 1999 Apr 15;7(4):449–460. doi: 10.1016/s0969-2126(99)80057-4. [DOI] [PubMed] [Google Scholar]
- Bradley L. A., Sweatman A. K., Lovering R. C., Jones A. M., Morgan G., Levinsky R. J., Kinnon C. Mutation detection in the X-linked agammaglobulinemia gene, BTK, using single strand conformation polymorphism analysis. Hum Mol Genet. 1994 Jan;3(1):79–83. doi: 10.1093/hmg/3.1.79. [DOI] [PubMed] [Google Scholar]
- Bradshaw J. M., Grucza R. A., Ladbury J. E., Waksman G. Probing the "two-pronged plug two-holed socket" model for the mechanism of binding of the Src SH2 domain to phosphotyrosyl peptides: a thermodynamic study. Biochemistry. 1998 Jun 23;37(25):9083–9090. doi: 10.1021/bi973147k. [DOI] [PubMed] [Google Scholar]
- Bradshaw J. M., Mitaxov V., Waksman G. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. J Mol Biol. 1999 Nov 5;293(4):971–985. doi: 10.1006/jmbi.1999.3190. [DOI] [PubMed] [Google Scholar]
- Bradshaw J. M., Waksman G. Calorimetric examination of high-affinity Src SH2 domain-tyrosyl phosphopeptide binding: dissection of the phosphopeptide sequence specificity and coupling energetics. Biochemistry. 1999 Apr 20;38(16):5147–5154. doi: 10.1021/bi982974y. [DOI] [PubMed] [Google Scholar]
- Bunnell S. C., Diehn M., Yaffe M. B., Findell P. R., Cantley L. C., Berg L. J. Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J Biol Chem. 2000 Jan 21;275(3):2219–2230. doi: 10.1074/jbc.275.3.2219. [DOI] [PubMed] [Google Scholar]
- Chen Y. J., Lin S. C., Tzeng S. R., Patel H. V., Lyu P. C., Cheng J. W. Stability and folding of the SH3 domain of Bruton's tyrosine kinase. Proteins. 1996 Dec;26(4):465–471. doi: 10.1002/(SICI)1097-0134(199612)26:4<465::AID-PROT7>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
- Cheng G., Ye Z. S., Baltimore D. Binding of Bruton's tyrosine kinase to Fyn, Lyn, or Hck through a Src homology 3 domain-mediated interaction. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8152–8155. doi: 10.1073/pnas.91.17.8152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng J. W., Cheng C. C., Lyu P. C., Chen S. T., Lin T. H. Solution conformation of a peptide corresponding to residues 151-172 of HIV-1 integrase using NMR and CD spectroscopy. Int J Pept Protein Res. 1996 Jan-Feb;47(1-2):117–122. doi: 10.1111/j.1399-3011.1996.tb00818.x. [DOI] [PubMed] [Google Scholar]
- Cohen G. B., Ren R., Baltimore D. Modular binding domains in signal transduction proteins. Cell. 1995 Jan 27;80(2):237–248. doi: 10.1016/0092-8674(95)90406-9. [DOI] [PubMed] [Google Scholar]
- Conley M. E., Mathias D., Treadaway J., Minegishi Y., Rohrer J. Mutations in btk in patients with presumed X-linked agammaglobulinemia. Am J Hum Genet. 1998 May;62(5):1034–1043. doi: 10.1086/301828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cory G. O., Lovering R. C., Hinshelwood S., MacCarthy-Morrogh L., Levinsky R. J., Kinnon C. The protein product of the c-cbl protooncogene is phosphorylated after B cell receptor stimulation and binds the SH3 domain of Bruton's tyrosine kinase. J Exp Med. 1995 Aug 1;182(2):611–615. doi: 10.1084/jem.182.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fluckiger A. C., Li Z., Kato R. M., Wahl M. I., Ochs H. D., Longnecker R., Kinet J. P., Witte O. N., Scharenberg A. M., Rawlings D. J. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 1998 Apr 1;17(7):1973–1985. doi: 10.1093/emboj/17.7.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haan S., Hemmann U., Hassiepen U., Schaper F., Schneider-Mergener J., Wollmer A., Heinrich P. C., Grötzinger J. Characterization and binding specificity of the monomeric STAT3-SH2 domain. J Biol Chem. 1999 Jan 15;274(3):1342–1348. doi: 10.1074/jbc.274.3.1342. [DOI] [PubMed] [Google Scholar]
- Hagemann T. L., Chen Y., Rosen F. S., Kwan S. P. Genomic organization of the Btk gene and exon scanning for mutations in patients with X-linked agammaglobulinemia. Hum Mol Genet. 1994 Oct;3(10):1743–1749. doi: 10.1093/hmg/3.10.1743. [DOI] [PubMed] [Google Scholar]
- Hammarström L., Gillner M., Smith C. I. Molecular basis for human immunodeficiencies. Curr Opin Immunol. 1993 Aug;5(4):579–584. doi: 10.1016/0952-7915(93)90041-p. [DOI] [PubMed] [Google Scholar]
- Hansson H., Mattsson P. T., Allard P., Haapaniemi P., Vihinen M., Smith C. I., Hard T. Solution structure of the SH3 domain from Bruton's tyrosine kinase. Biochemistry. 1998 Mar 3;37(9):2912–2924. doi: 10.1021/bi972409f. [DOI] [PubMed] [Google Scholar]
- Hashimoto S., Iwamatsu A., Ishiai M., Okawa K., Yamadori T., Matsushita M., Baba Y., Kishimoto T., Kurosaki T., Tsukada S. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK--functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood. 1999 Oct 1;94(7):2357–2364. [PubMed] [Google Scholar]
- Hyvönen M., Saraste M. Structure of the PH domain and Btk motif from Bruton's tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J. 1997 Jun 16;16(12):3396–3404. doi: 10.1093/emboj/16.12.3396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ji Q. S., Chattopadhyay A., Vecchi M., Carpenter G. Physiological requirement for both SH2 domains for phospholipase C-gamma1 function and interaction with platelet-derived growth factor receptors. Mol Cell Biol. 1999 Jul;19(7):4961–4970. doi: 10.1128/mcb.19.7.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karreman C. Fusion PCR, a one-step variant of the "megaprimer" method of mutagenesis. Biotechniques. 1998 May;24(5):736–742. doi: 10.2144/98245bm08. [DOI] [PubMed] [Google Scholar]
- Ladbury J. E., Lemmon M. A., Zhou M., Green J., Botfield M. C., Schlessinger J. Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3199–3203. doi: 10.1073/pnas.92.8.3199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langhans-Rajasekaran S. A., Wan Y., Huang X. Y. Activation of Tsk and Btk tyrosine kinases by G protein beta gamma subunits. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8601–8605. doi: 10.1073/pnas.92.19.8601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrogh L. M., Hinshelwood S., Costello P., Cory G. O., Kinnon C. The SH3 domain of Bruton's tyrosine kinase displays altered ligand binding properties when auto-phosphorylated in vitro. Eur J Immunol. 1999 Jul;29(7):2269–2279. doi: 10.1002/(SICI)1521-4141(199907)29:07<2269::AID-IMMU2269>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Nore B. F., Vargas L., Mohamed A. J., Brandén L. J., Bäckesjö C. M., Islam T. C., Mattsson P. T., Hultenby K., Christensson B., Smith C. I. Redistribution of Bruton's tyrosine kinase by activation of phosphatidylinositol 3-kinase and Rho-family GTPases. Eur J Immunol. 2000 Jan;30(1):145–154. doi: 10.1002/1521-4141(200001)30:1<145::AID-IMMU145>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
- Panayotou G., Bax B., Gout I., Federwisch M., Wroblowski B., Dhand R., Fry M. J., Blundell T. L., Wollmer A., Waterfield M. D. Interaction of the p85 subunit of PI 3-kinase and its N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes. EMBO J. 1992 Dec;11(12):4261–4272. doi: 10.1002/j.1460-2075.1992.tb05524.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel H. V., Tzeng S. R., Liao C. Y., Chen S. H., Cheng J. W. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Proteins. 1997 Dec;29(4):545–552. doi: 10.1002/(sici)1097-0134(199712)29:4<545::aid-prot13>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
- Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
- Pawson T., Schlessingert J. SH2 and SH3 domains. Curr Biol. 1993 Jul 1;3(7):434–442. doi: 10.1016/0960-9822(93)90350-w. [DOI] [PubMed] [Google Scholar]
- Saffran D. C., Parolini O., Fitch-Hilgenberg M. E., Rawlings D. J., Afar D. E., Witte O. N., Conley M. E. Brief report: a point mutation in the SH2 domain of Bruton's tyrosine kinase in atypical X-linked agammaglobulinemia. N Engl J Med. 1994 May 26;330(21):1488–1491. doi: 10.1056/NEJM199405263302104. [DOI] [PubMed] [Google Scholar]
- Sawyer T. K. Src homology-2 domains: structure, mechanisms, and drug discovery. Biopolymers. 1998;47(3):243–261. doi: 10.1002/(SICI)1097-0282(1998)47:3<243::AID-BIP4>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Scharenberg A. M., El-Hillal O., Fruman D. A., Beitz L. O., Li Z., Lin S., Gout I., Cantley L. C., Rawlings D. J., Kinet J. P. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 1998 Apr 1;17(7):1961–1972. doi: 10.1093/emboj/17.7.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuster V., Seidenspinner S., Kreth H. W. Detection of a novel mutation in the SRC homology domain 2 (SH2) of Bruton's tyrosine kinase and direct female carrier evaluation in a family with X-linked agammaglobulinemia. Am J Med Genet. 1996 May 3;63(1):318–322. doi: 10.1002/(SICI)1096-8628(19960503)63:1<318::AID-AJMG53>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- Shoelson S. E., Sivaraja M., Williams K. P., Hu P., Schlessinger J., Weiss M. A. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation. EMBO J. 1993 Feb;12(2):795–802. doi: 10.1002/j.1460-2075.1993.tb05714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shokat K. M. Tyrosine kinases: modular signaling enzymes with tunable specificities. Chem Biol. 1995 Aug;2(8):509–514. doi: 10.1016/1074-5521(95)90183-3. [DOI] [PubMed] [Google Scholar]
- Smith C. I., Baskin B., Humire-Greiff P., Zhou J. N., Olsson P. G., Maniar H. S., Kjellén P., Lambris J. D., Christensson B., Hammarström L. Expression of Bruton's agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol. 1994 Jan 15;152(2):557–565. [PubMed] [Google Scholar]
- Smith C. I., Islam K. B., Vorechovský I., Olerup O., Wallin E., Rabbani H., Baskin B., Hammarström L. X-linked agammaglobulinemia and other immunoglobulin deficiencies. Immunol Rev. 1994 Apr;138:159–183. doi: 10.1111/j.1600-065x.1994.tb00851.x. [DOI] [PubMed] [Google Scholar]
- Songyang Z., Cantley L. C. Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci. 1995 Nov;20(11):470–475. doi: 10.1016/s0968-0004(00)89103-3. [DOI] [PubMed] [Google Scholar]
- Songyang Z., Gish G., Mbamalu G., Pawson T., Cantley L. C. A single point mutation switches the specificity of group III Src homology (SH) 2 domains to that of group I SH2 domains. J Biol Chem. 1995 Nov 3;270(44):26029–26032. doi: 10.1074/jbc.270.44.26029. [DOI] [PubMed] [Google Scholar]
- Songyang Z., Shoelson S. E., Chaudhuri M., Gish G., Pawson T., Haser W. G., King F., Roberts T., Ratnofsky S., Lechleider R. J. SH2 domains recognize specific phosphopeptide sequences. Cell. 1993 Mar 12;72(5):767–778. doi: 10.1016/0092-8674(93)90404-e. [DOI] [PubMed] [Google Scholar]
- Su Y. W., Zhang Y., Schweikert J., Koretzky G. A., Reth M., Wienands J. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur J Immunol. 1999 Nov;29(11):3702–3711. doi: 10.1002/(SICI)1521-4141(199911)29:11<3702::AID-IMMU3702>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Sudol M. From Src Homology domains to other signaling modules: proposal of the 'protein recognition code'. Oncogene. 1998 Sep 17;17(11 REVIEWS):1469–1474. doi: 10.1038/sj.onc.1202182. [DOI] [PubMed] [Google Scholar]
- Takata M., Kurosaki T. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2. J Exp Med. 1996 Jul 1;184(1):31–40. doi: 10.1084/jem.184.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukada S., Saffran D. C., Rawlings D. J., Parolini O., Allen R. C., Klisak I., Sparkes R. S., Kubagawa H., Mohandas T., Quan S. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993 Jan 29;72(2):279–290. doi: 10.1016/0092-8674(93)90667-f. [DOI] [PubMed] [Google Scholar]
- Tsukada S., Simon M. I., Witte O. N., Katz A. Binding of beta gamma subunits of heterotrimeric G proteins to the PH domain of Bruton tyrosine kinase. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11256–11260. doi: 10.1073/pnas.91.23.11256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tzeng S. R., Lou Y. C., Pai M. T., Jain M. L., Cheng J. W. Solution structure of the human BTK SH3 domain complexed with a proline-rich peptide from p120cbl. J Biomol NMR. 2000 Apr;16(4):303–312. doi: 10.1023/a:1008376624863. [DOI] [PubMed] [Google Scholar]
- Vetrie D., Vorechovský I., Sideras P., Holland J., Davies A., Flinter F., Hammarström L., Kinnon C., Levinsky R., Bobrow M. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993 Jan 21;361(6409):226–233. doi: 10.1038/361226a0. [DOI] [PubMed] [Google Scholar]
- Vihinen M., Iwata T., Kinnon C., Kwan S. P., Ochs H. D., Vorechovský I., Smith C. I. BTKbase, mutation database for X-linked agammaglobulinemia (XLA). Nucleic Acids Res. 1996 Jan 1;24(1):160–165. doi: 10.1093/nar/24.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vihinen M., Zvelebil M. J., Zhu Q., Brooimans R. A., Ochs H. D., Zegers B. J., Nilsson L., Waterfield M. D., Smith C. I. Structural basis for pleckstrin homology domain mutations in X-linked agammaglobulinemia. Biochemistry. 1995 Feb 7;34(5):1475–1481. doi: 10.1021/bi00005a002. [DOI] [PubMed] [Google Scholar]
- Vorechovský I., Vihinen M., de Saint Basile G., Honsová S., Hammarström L., Müller S., Nilsson L., Fischer A., Smith C. I. DNA-based mutation analysis of Bruton's tyrosine kinase gene in patients with X-linked agammaglobulinaemia. Hum Mol Genet. 1995 Jan;4(1):51–58. doi: 10.1093/hmg/4.1.51. [DOI] [PubMed] [Google Scholar]
- Waksman G., Kominos D., Robertson S. C., Pant N., Baltimore D., Birge R. B., Cowburn D., Hanafusa H., Mayer B. J., Overduin M. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature. 1992 Aug 20;358(6388):646–653. doi: 10.1038/358646a0. [DOI] [PubMed] [Google Scholar]
- Waksman G., Shoelson S. E., Pant N., Cowburn D., Kuriyan J. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell. 1993 Mar 12;72(5):779–790. doi: 10.1016/0092-8674(93)90405-f. [DOI] [PubMed] [Google Scholar]
- Williams K. P., Shoelson S. E. Cooperative self-assembly of SH2 domain fragments restores phosphopeptide binding. Biochemistry. 1993 Oct 26;32(42):11279–11284. doi: 10.1021/bi00093a003. [DOI] [PubMed] [Google Scholar]
- Yao L., Kawakami Y., Kawakami T. The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9175–9179. doi: 10.1073/pnas.91.19.9175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu H., Schreiber S. L. Signalling an interest. Nat Struct Biol. 1994 Jul;1(7):417–420. doi: 10.1038/nsb0794-417. [DOI] [PubMed] [Google Scholar]
- Zhu Q., Zhang M., Rawlings D. J., Vihinen M., Hagemann T., Saffran D. C., Kwan S. P., Nilsson L., Smith C. I., Witte O. N. Deletion within the Src homology domain 3 of Bruton's tyrosine kinase resulting in X-linked agammaglobulinemia (XLA). J Exp Med. 1994 Aug 1;180(2):461–470. doi: 10.1084/jem.180.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Weers M., Mensink R. G., Kraakman M. E., Schuurman R. K., Hendriks R. W. Mutation analysis of the Bruton's tyrosine kinase gene in X-linked agammaglobulinemia: identification of a mutation which affects the same codon as is altered in immunodeficient xid mice. Hum Mol Genet. 1994 Jan;3(1):161–166. doi: 10.1093/hmg/3.1.161. [DOI] [PubMed] [Google Scholar]