Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Dec;9(12):2477–2488. doi: 10.1110/ps.9.12.2477

Enhancement by Mg2+ of domain specificity in Ca2+-dependent interactions of calmodulin with target sequences.

S R Martin 1, L Masino 1, P M Bayley 1
PMCID: PMC2144519  PMID: 11206069

Abstract

Mg2+ binds to calmodulin without inducing the changes in secondary structure that are characteristic of Ca2+ binding, or the exposure of hydrophobic surfaces that are involved in typical Ca2+-dependent target interactions. The binding of Mg2+ does, however, produce significant spectroscopic changes in residues located in the Ca2+-binding loops, and the Mg-calmodulin complex is significantly different from apo-calmodulin in loop conformation. Direct measurement of Mg2+ binding constants, and the effects of Mg2+ on Ca2+ binding to calmodulin, are consistent with specific binding of Mg2+, in competition with Ca2+. Mg2+ increases the thermodynamic stability of calmodulin, and we conclude that under resting, nonstimulated conditions, cellular Mg2+ has a direct role in conferring stability on both domains of apo-calmodulin. Apo-calmodulin binds typical target sequences from skeletal muscle myosin light chain kinase and neuromodulin with Kd approximately 70-90 nM (at low ionic strength). These affinities are virtually unchanged by 5 mM Mg2+, in marked contrast to the strong enhancement of peptide affinity induced by Ca2+. Under conditions of stimulation and increased [Ca2+], Mg2+ has a role in directing the mode of initial target binding preferentially to the C-domain of calmodulin, due to the opposite relative affinities for binding of Ca2+ and Mg2+ to the two domains. Mg2+ thus amplifies the intrinsic differences of the domains, in a target specific manner. It also contributes to setting the Ca2+ threshold for enzyme activation and increases the importance of a partially Ca2+-saturated calmodulin-target complex that can act as a regulatory kinetic and equilibrium intermediate in Ca2+-dependent target interactions.

Full Text

The Full Text of this article is available as a PDF (918.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayley P. M., Findlay W. A., Martin S. R. Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Sci. 1996 Jul;5(7):1215–1228. doi: 10.1002/pro.5560050701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J., Bootman M. D., Lipp P. Calcium--a life and death signal. Nature. 1998 Oct 15;395(6703):645–648. doi: 10.1038/27094. [DOI] [PubMed] [Google Scholar]
  3. Biekofsky R. R., Feeney J. Cooperative cyclic interactions involved in metal binding to pairs of sites in EF-hand proteins. FEBS Lett. 1998 Nov 13;439(1-2):101–106. doi: 10.1016/s0014-5793(98)01349-0. [DOI] [PubMed] [Google Scholar]
  4. Biekofsky R. R., Martin S. R., Browne J. P., Bayley P. M., Feeney J. Ca2+ coordination to backbone carbonyl oxygen atoms in calmodulin and other EF-hand proteins: 15N chemical shifts as probes for monitoring individual-site Ca2+ coordination. Biochemistry. 1998 May 19;37(20):7617–7629. doi: 10.1021/bi9800449. [DOI] [PubMed] [Google Scholar]
  5. Brown S. E., Martin S. R., Bayley P. M. Kinetic control of the dissociation pathway of calmodulin-peptide complexes. J Biol Chem. 1997 Feb 7;272(6):3389–3397. doi: 10.1074/jbc.272.6.3389. [DOI] [PubMed] [Google Scholar]
  6. Browne J. P., Strom M., Martin S. R., Bayley P. M. The role of beta-sheet interactions in domain stability, folding, and target recognition reactions of calmodulin. Biochemistry. 1997 Aug 5;36(31):9550–9561. doi: 10.1021/bi970460d. [DOI] [PubMed] [Google Scholar]
  7. Cates M. S., Berry M. B., Ho E. L., Li Q., Potter J. D., Phillips G. N., Jr Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin. Structure. 1999 Oct 15;7(10):1269–1278. doi: 10.1016/s0969-2126(00)80060-x. [DOI] [PubMed] [Google Scholar]
  8. Crivici A., Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct. 1995;24:85–116. doi: 10.1146/annurev.bb.24.060195.000505. [DOI] [PubMed] [Google Scholar]
  9. Declercq J. P., Tinant B., Parello J., Rambaud J. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. J Mol Biol. 1991 Aug 20;220(4):1017–1039. doi: 10.1016/0022-2836(91)90369-h. [DOI] [PubMed] [Google Scholar]
  10. Drabikowski W., Brzeska H., Venyaminov SYu Tryptic fragments of calmodulin. Ca2+- and Mg2+-induced conformational changes. J Biol Chem. 1982 Oct 10;257(19):11584–11590. [PubMed] [Google Scholar]
  11. Ebel H., Günther T. Magnesium metabolism: a review. J Clin Chem Clin Biochem. 1980 May;18(5):257–270. doi: 10.1515/cclm.1980.18.5.257. [DOI] [PubMed] [Google Scholar]
  12. Evenäs J., Thulin E., Malmendal A., Forsén S., Carlström G. NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state. Biochemistry. 1997 Mar 25;36(12):3448–3457. doi: 10.1021/bi9628275. [DOI] [PubMed] [Google Scholar]
  13. Falke J. J., Drake S. K., Hazard A. L., Peersen O. B. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys. 1994 Aug;27(3):219–290. doi: 10.1017/s0033583500003012. [DOI] [PubMed] [Google Scholar]
  14. Findlay W. A., Martin S. R., Beckingham K., Bayley P. M. Recovery of native structure by calcium binding site mutants of calmodulin upon binding of sk-MLCK target peptides. Biochemistry. 1995 Feb 21;34(7):2087–2094. doi: 10.1021/bi00007a001. [DOI] [PubMed] [Google Scholar]
  15. Finn B. E., Evenäs J., Drakenberg T., Waltho J. P., Thulin E., Forsén S. Calcium-induced structural changes and domain autonomy in calmodulin. Nat Struct Biol. 1995 Sep;2(9):777–783. doi: 10.1038/nsb0995-777. [DOI] [PubMed] [Google Scholar]
  16. Follenius A., Gerard D. Fluorescence investigations of calmodulin hydrophobic sites. Biochem Biophys Res Commun. 1984 Mar 30;119(3):1154–1160. doi: 10.1016/0006-291x(84)90896-9. [DOI] [PubMed] [Google Scholar]
  17. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  18. Gilli R., Lafitte D., Lopez C., Kilhoffer M., Makarov A., Briand C., Haiech J. Thermodynamic analysis of calcium and magnesium binding to calmodulin. Biochemistry. 1998 Apr 21;37(16):5450–5456. doi: 10.1021/bi972083a. [DOI] [PubMed] [Google Scholar]
  19. Haiech J., Kilhoffer M. C., Lukas T. J., Craig T. A., Roberts D. M., Watterson D. M. Restoration of the calcium binding activity of mutant calmodulins toward normal by the presence of a calmodulin binding structure. J Biol Chem. 1991 Feb 25;266(6):3427–3431. [PubMed] [Google Scholar]
  20. Haiech J., Klee C. B., Demaille J. G. Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. Biochemistry. 1981 Jun 23;20(13):3890–3897. doi: 10.1021/bi00516a035. [DOI] [PubMed] [Google Scholar]
  21. Houdusse A., Silver M., Cohen C. A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Structure. 1996 Dec 15;4(12):1475–1490. doi: 10.1016/s0969-2126(96)00154-2. [DOI] [PubMed] [Google Scholar]
  22. Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996 Jan;21(1):14–17. [PubMed] [Google Scholar]
  23. Kilhoffer M. C., Demaille J. G., Gérard D. Tyrosine fluorescence of ram testis and octopus calmodulins. Effects of calcium, magnesium, and ionic strength. Biochemistry. 1981 Jul 21;20(15):4407–4414. doi: 10.1021/bi00518a027. [DOI] [PubMed] [Google Scholar]
  24. Kilhoffer M. C., Kubina M., Travers F., Haiech J. Use of engineered proteins with internal tryptophan reporter groups and pertubation techniques to probe the mechanism of ligand-protein interactions: investigation of the mechanism of calcium binding to calmodulin. Biochemistry. 1992 Sep 1;31(34):8098–8106. doi: 10.1021/bi00149a046. [DOI] [PubMed] [Google Scholar]
  25. Kuboniwa H., Tjandra N., Grzesiek S., Ren H., Klee C. B., Bax A. Solution structure of calcium-free calmodulin. Nat Struct Biol. 1995 Sep;2(9):768–776. doi: 10.1038/nsb0995-768. [DOI] [PubMed] [Google Scholar]
  26. Lafitte D., Capony J. P., Grassy G., Haiech J., Calas B. Analysis of the ion binding sites of calmodulin by electrospray ionization mass spectrometry. Biochemistry. 1995 Oct 24;34(42):13825–13832. doi: 10.1021/bi00042a014. [DOI] [PubMed] [Google Scholar]
  27. Linse S., Helmersson A., Forsén S. Calcium binding to calmodulin and its globular domains. J Biol Chem. 1991 May 5;266(13):8050–8054. [PubMed] [Google Scholar]
  28. Mackall J., Klee C. B. Calcium-induced sensitization of the central helix of calmodulin to proteolysis. Biochemistry. 1991 Jul 23;30(29):7242–7247. doi: 10.1021/bi00243a028. [DOI] [PubMed] [Google Scholar]
  29. Malmendal A., Evenäs J., Thulin E., Gippert G. P., Drakenberg T., Forsén S. When size is important. Accommodation of magnesium in a calcium binding regulatory domain. J Biol Chem. 1998 Oct 30;273(44):28994–29001. doi: 10.1074/jbc.273.44.28994. [DOI] [PubMed] [Google Scholar]
  30. Malmendal A., Linse S., Evenäs J., Forsén S., Drakenberg T. Battle for the EF-hands: magnesium-calcium interference in calmodulin. Biochemistry. 1999 Sep 7;38(36):11844–11850. doi: 10.1021/bi9909288. [DOI] [PubMed] [Google Scholar]
  31. Martin S. R., Bayley P. M., Brown S. E., Porumb T., Zhang M., Ikura M. Spectroscopic characterization of a high-affinity calmodulin-target peptide hybrid molecule. Biochemistry. 1996 Mar 19;35(11):3508–3517. doi: 10.1021/bi952522a. [DOI] [PubMed] [Google Scholar]
  32. Martin S. R., Bayley P. M. The effects of Ca2+ and Cd2+ on the secondary and tertiary structure of bovine testis calmodulin. A circular-dichroism study. Biochem J. 1986 Sep 1;238(2):485–490. doi: 10.1042/bj2380485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Martin S. R., Lu A. Q., Xiao J., Kleinjung J., Beckingham K., Bayley P. M. Conformational and metal-binding properties of androcam, a testis-specific, calmodulin-related protein from Drosophila. Protein Sci. 1999 Nov;8(11):2444–2454. doi: 10.1110/ps.8.11.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Martin S. R., Maune J. F., Beckingham K., Bayley P. M. Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin. Eur J Biochem. 1992 May 1;205(3):1107–1114. doi: 10.1111/j.1432-1033.1992.tb16879.x. [DOI] [PubMed] [Google Scholar]
  35. Masino L., Martin S. R., Bayley P. M. Ligand binding and thermodynamic stability of a multidomain protein, calmodulin. Protein Sci. 2000 Aug;9(8):1519–1529. doi: 10.1110/ps.9.8.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Maune J. F., Beckingham K., Martin S. R., Bayley P. M. Circular dichroism studies on calcium binding to two series of Ca2+ binding site mutants of Drosophila melanogaster calmodulin. Biochemistry. 1992 Sep 1;31(34):7779–7786. doi: 10.1021/bi00149a006. [DOI] [PubMed] [Google Scholar]
  37. Maune J. F., Klee C. B., Beckingham K. Ca2+ binding and conformational change in two series of point mutations to the individual Ca(2+)-binding sites of calmodulin. J Biol Chem. 1992 Mar 15;267(8):5286–5295. [PubMed] [Google Scholar]
  38. Milos M., Schaer J. J., Comte M., Cox J. A. Calcium-proton and calcium-magnesium antagonisms in calmodulin: microcalorimetric and potentiometric analyses. Biochemistry. 1986 Oct 7;25(20):6279–6287. doi: 10.1021/bi00368a067. [DOI] [PubMed] [Google Scholar]
  39. Ohki S., Ikura M., Zhang M. Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin. Biochemistry. 1997 Apr 8;36(14):4309–4316. doi: 10.1021/bi962759m. [DOI] [PubMed] [Google Scholar]
  40. Ouyang H., Vogel H. J. Metal ion binding to calmodulin: NMR and fluorescence studies. Biometals. 1998 Sep;11(3):213–222. doi: 10.1023/a:1009226215543. [DOI] [PubMed] [Google Scholar]
  41. Peersen O. B., Madsen T. S., Falke J. J. Intermolecular tuning of calmodulin by target peptides and proteins: differential effects on Ca2+ binding and implications for kinase activation. Protein Sci. 1997 Apr;6(4):794–807. doi: 10.1002/pro.5560060406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Persechini A., Cronk B. The relationship between the free concentrations of Ca2+ and Ca2+-calmodulin in intact cells. J Biol Chem. 1999 Mar 12;274(11):6827–6830. doi: 10.1074/jbc.274.11.6827. [DOI] [PubMed] [Google Scholar]
  43. Pethig R., Kuhn M., Payne R., Adler E., Chen T. H., Jaffe L. F. On the dissociation constants of BAPTA-type calcium buffers. Cell Calcium. 1989 Oct;10(7):491–498. doi: 10.1016/0143-4160(89)90026-2. [DOI] [PubMed] [Google Scholar]
  44. Pundak S., Roche R. S. Tyrosine and tyrosinate fluorescence of bovine testes calmodulin: calcium and pH dependence. Biochemistry. 1984 Mar 27;23(7):1549–1555. doi: 10.1021/bi00302a032. [DOI] [PubMed] [Google Scholar]
  45. Seamon K. B. Calcium- and magnesium-dependent conformational states of calmodulin as determined by nuclear magnetic resonance. Biochemistry. 1980 Jan 8;19(1):207–215. doi: 10.1021/bi00542a031. [DOI] [PubMed] [Google Scholar]
  46. Tsai M. D., Drakenberg T., Thulin E., Forsén S. Is the binding of magnesium (II) to calmodulin significant? An investigation by magnesium-25 nuclear magnetic resonance. Biochemistry. 1987 Jun 16;26(12):3635–3643. doi: 10.1021/bi00386a057. [DOI] [PubMed] [Google Scholar]
  47. Tsalkova T. N., Privalov P. L. Thermodynamic study of domain organization in troponin C and calmodulin. J Mol Biol. 1985 Feb 20;181(4):533–544. doi: 10.1016/0022-2836(85)90425-5. [DOI] [PubMed] [Google Scholar]
  48. Tsvetkov P. O., Protasevich I. I., Gilli R., Lafitte D., Lobachov V. M., Haiech J., Briand C., Makarov A. A. Apocalmodulin binds to the myosin light chain kinase calmodulin target site. J Biol Chem. 1999 Jun 25;274(26):18161–18164. doi: 10.1074/jbc.274.26.18161. [DOI] [PubMed] [Google Scholar]
  49. Yap K. L., Ames J. B., Swindells M. B., Ikura M. Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins. 1999 Nov 15;37(3):499–507. doi: 10.1002/(sici)1097-0134(19991115)37:3<499::aid-prot17>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  50. Zhang M., Tanaka T., Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol. 1995 Sep;2(9):758–767. doi: 10.1038/nsb0995-758. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES