Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Dec;9(12):2436–2445. doi: 10.1110/ps.9.12.2436

Presence of closely spaced protein thiols on the surface of mammalian cells.

N Donoghue 1, P T Yam 1, X M Jiang 1, P J Hogg 1
PMCID: PMC2144521  PMID: 11206065

Abstract

It has been proposed that certain cell-surface proteins undergo redox reactions, that is, transfer of hydrogens and electrons between closely spaced cysteine thiols that can lead to reduction, formation, or interchange of disulfide bonds. This concept was tested using a membrane-impermeable trivalent arsenical to identify closely spaced thiols in cell-surface proteins. We attached the trivalent arsenical, phenylarsenoxide, to the thiol of reduced glutathione to produce 4-(N-(S-glutathionylacetyl)amino)phenylarsenoxide (GSAO). GSAO bound tightly to synthetic, peptide, and protein dithiols like thioredoxin, but not to monothiols. To identify cell-surface proteins that contain closely spaced thiols, we attached a biotin moiety through a spacer arm to the primary amino group of the gamma-glutamyl residue of GSAO (GSAO-B). Incorporation of GSAO-B into proteins was assessed by measuring the biotin using streptavidin-peroxidase. Up to 12 distinct proteins were labeled with GSAO-B on the surface of endothelial and fibrosarcoma cells. The pattern of labeled proteins differed between the different cell types. Protein disulfide isomerase was one of the proteins on the endothelial and fibrosarcoma cell surface that incorporated GSAO-B. These findings demonstrate that the cell-surface environment can support the existence of closely spaced protein thiols and suggest that at least some of these thiols are redox active.

Full Text

The Full Text of this article is available as a PDF (618.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannai S., Tsukeda H. The export of glutathione from human diploid cells in culture. J Biol Chem. 1979 May 10;254(9):3444–3450. [PubMed] [Google Scholar]
  2. Brown S. B., Turner R. J., Roche R. S., Stevenson K. J. Conformational analysis of thioredoxin using organoarsenical reagents as probes. A time-resolved fluorescence anisotropy and size exclusion chromatography study. Biochem Cell Biol. 1989 Jan;67(1):25–33. doi: 10.1139/o89-004. [DOI] [PubMed] [Google Scholar]
  3. Burgess J. K., Hotchkiss K. A., Suter C., Dudman N. P., Szöllösi J., Chesterman C. N., Chong B. H., Hogg P. J. Physical proximity and functional association of glycoprotein 1balpha and protein-disulfide isomerase on the platelet plasma membrane. J Biol Chem. 2000 Mar 31;275(13):9758–9766. doi: 10.1074/jbc.275.13.9758. [DOI] [PubMed] [Google Scholar]
  4. Frost S. C., Lane M. D. Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J Biol Chem. 1985 Mar 10;260(5):2646–2652. [PubMed] [Google Scholar]
  5. Frost S. C., Schwalbe M. S. Uptake and binding of radiolabelled phenylarsine oxide in 3T3-L1 adipocytes. Biochem J. 1990 Aug 1;269(3):589–595. doi: 10.1042/bj2690589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilbert H. F. Protein disulfide isomerase and assisted protein folding. J Biol Chem. 1997 Nov 21;272(47):29399–29402. doi: 10.1074/jbc.272.47.29399. [DOI] [PubMed] [Google Scholar]
  7. Gitler C., Mogyoros M., Kalef E. Labeling of protein vicinal dithiols: role of protein-S2 to protein-(SH)2 conversion in metabolic regulation and oxidative stress. Methods Enzymol. 1994;233:403–415. doi: 10.1016/s0076-6879(94)33047-6. [DOI] [PubMed] [Google Scholar]
  8. Griffin B. A., Adams S. R., Tsien R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science. 1998 Jul 10;281(5374):269–272. doi: 10.1126/science.281.5374.269. [DOI] [PubMed] [Google Scholar]
  9. Hannestad U., Lundqvist P., Sörbo B. An agarose derivative containing an arsenical for affinity chromatography of thiol compounds. Anal Biochem. 1982 Oct;126(1):200–204. doi: 10.1016/0003-2697(82)90129-4. [DOI] [PubMed] [Google Scholar]
  10. Hogg P. J., Jackson C. M. Heparin promotes the binding of thrombin to fibrin polymer. Quantitative characterization of a thrombin-fibrin polymer-heparin ternary complex. J Biol Chem. 1990 Jan 5;265(1):241–247. [PubMed] [Google Scholar]
  11. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
  12. Hotchkiss K. A., Chesterman C. N., Hogg P. J. Catalysis of disulfide isomerization in thrombospondin 1 by protein disulfide isomerase. Biochemistry. 1996 Jul 30;35(30):9761–9767. doi: 10.1021/bi9603938. [DOI] [PubMed] [Google Scholar]
  13. Huppa J. B., Ploegh H. L. The eS-Sence of -SH in the ER. Cell. 1998 Jan 23;92(2):145–148. doi: 10.1016/s0092-8674(00)80907-1. [DOI] [PubMed] [Google Scholar]
  14. Jauhiainen M., Stevenson K. J., Dolphin P. J. Human plasma lecithin-cholesterol acyltransferase. The vicinal nature of cysteine 31 and cysteine 184 in the catalytic site. J Biol Chem. 1988 May 15;263(14):6525–6533. [PubMed] [Google Scholar]
  15. Jiang X. M., Fitzgerald M., Grant C. M., Hogg P. J. Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase. J Biol Chem. 1999 Jan 22;274(4):2416–2423. doi: 10.1074/jbc.274.4.2416. [DOI] [PubMed] [Google Scholar]
  16. Kalef E., Gitler C. Purification of vicinal dithiol-containing proteins by arsenical-based affinity chromatography. Methods Enzymol. 1994;233:395–403. doi: 10.1016/s0076-6879(94)33046-8. [DOI] [PubMed] [Google Scholar]
  17. Klemperer N. S., Pickart C. M. Arsenite inhibits two steps in the ubiquitin-dependent proteolytic pathway. J Biol Chem. 1989 Nov 15;264(32):19245–19252. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lawrence D. A., Song R., Weber P. Surface thiols of human lymphocytes and their changes after in vitro and in vivo activation. J Leukoc Biol. 1996 Nov;60(5):611–618. doi: 10.1002/jlb.60.5.611. [DOI] [PubMed] [Google Scholar]
  20. Le F., Stomski F., Woodcock J. M., Lopez A. F., Gonda T. J. The role of disulfide-linked dimerization in interleukin-3 receptor signaling and biological activity. J Biol Chem. 2000 Feb 18;275(7):5124–5130. doi: 10.1074/jbc.275.7.5124. [DOI] [PubMed] [Google Scholar]
  21. Lynch G. W., Sloane A. J., Raso V., Lai A., Cunningham A. L. Direct evidence for native CD4 oligomers in lymphoid and monocytoid cells. Eur J Immunol. 1999 Aug;29(8):2590–2602. doi: 10.1002/(SICI)1521-4141(199908)29:08<2590::AID-IMMU2590>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  22. Mandel R., Ryser H. J., Ghani F., Wu M., Peak D. Inhibition of a reductive function of the plasma membrane by bacitracin and antibodies against protein disulfide-isomerase. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4112–4116. doi: 10.1073/pnas.90.9.4112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  24. Rosen A., Lundman P., Carlsson M., Bhavani K., Srinivasa B. R., Kjellström G., Nilsson K., Holmgren A. A CD4+ T cell line-secreted factor, growth promoting for normal and leukemic B cells, identified as thioredoxin. Int Immunol. 1995 Apr;7(4):625–633. doi: 10.1093/intimm/7.4.625. [DOI] [PubMed] [Google Scholar]
  25. Stevenson K. J., Hale G., Perham R. N. Inhibition of pyruvate dehydrogenase multienzyme complex from Escherichia coli with mono- and bifunctional arsenoxides. Biochemistry. 1978 May 30;17(11):2189–2192. doi: 10.1021/bi00604a026. [DOI] [PubMed] [Google Scholar]
  26. Täger M., Kröning H., Thiel U., Ansorge S. Membrane-bound proteindisulfide isomerase (PDI) is involved in regulation of surface expression of thiols and drug sensitivity of B-CLL cells. Exp Hematol. 1997 Jul;25(7):601–607. [PubMed] [Google Scholar]
  27. Weichsel A., Gasdaska J. R., Powis G., Montfort W. R. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure. 1996 Jun 15;4(6):735–751. doi: 10.1016/s0969-2126(96)00079-2. [DOI] [PubMed] [Google Scholar]
  28. Zhang Z. Y., Davis J. P., Van Etten R. L. Covalent modification and active site-directed inactivation of a low molecular weight phosphotyrosyl protein phosphatase. Biochemistry. 1992 Feb 18;31(6):1701–1711. doi: 10.1021/bi00121a018. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES