Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Dec;9(12):2329–2337. doi: 10.1110/ps.9.12.2329

Structural comparison of Ntn-hydrolases.

C Oinonen 1, J Rouvinen 1
PMCID: PMC2144523  PMID: 11206054

Abstract

The Ntn-hydrolases (N-terminal nucleophile) are a superfamily of diverse enzymes that has recently been characterized. All of the proteins in this family are activated autocatalytically; they contain an N-terminally located catalytic nucleophile, and they cleave an amide bond. In the present study, the structures of four enzymes of this superfamily are compared in more detail. Although the amino acid sequence homology is almost completely absent, the enzymes share a similar alphabeta betaalpha-core structure. The central beta-sheets in the core were found to have different packing angles, ranging from 5 to 35 degrees. In the Ntn-hydrolases under study, eight totally conserved secondary structure units were found (region C). Five of them were observed to contain the greatest number of conserved and functionally important residues and are therefore crucial for the structure and function of Ntn-hydrolases. Two additional regions, consisting of secondary structure units (regions A and B), were found to be in structurally similar locations, but in different orders in the polypeptide chain. The catalytic machinery is located in the structures in a similar manner, and thus the catalytic mechanisms of all of the enzymes are probably similar. However, the substrate binding and the oxyanion hole differed partially.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artymiuk P. J. A sting in the (N-terminal) tail. Nat Struct Biol. 1995 Dec;2(12):1035–1037. doi: 10.1038/nsb1295-1035. [DOI] [PubMed] [Google Scholar]
  2. Bochtler M., Ditzel L., Groll M., Huber R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6070–6074. doi: 10.1073/pnas.94.12.6070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bompard-Gilles C., Villeret V., Davies G. J., Fanuel L., Joris B., Frère J. M., Van Beeumen J. A new variant of the Ntn hydrolase fold revealed by the crystal structure of L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi. Structure. 2000 Feb 15;8(2):153–162. doi: 10.1016/s0969-2126(00)00091-5. [DOI] [PubMed] [Google Scholar]
  4. Brannigan J. A., Dodson G., Duggleby H. J., Moody P. C., Smith J. L., Tomchick D. R., Murzin A. G. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature. 1995 Nov 23;378(6555):416–419. doi: 10.1038/378416a0. [DOI] [PubMed] [Google Scholar]
  5. Colloc'h N., Poupon A., Mornon J. P. Sequence and structural features of the T-fold, an original tunnelling building unit. Proteins. 2000 May 1;39(2):142–154. doi: 10.1002/(sici)1097-0134(20000501)39:2<142::aid-prot4>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  6. Duggleby H. J., Tolley S. P., Hill C. P., Dodson E. J., Dodson G., Moody P. C. Penicillin acylase has a single-amino-acid catalytic centre. Nature. 1995 Jan 19;373(6511):264–268. doi: 10.1038/373264a0. [DOI] [PubMed] [Google Scholar]
  7. Groll M., Ditzel L., Löwe J., Stock D., Bochtler M., Bartunik H. D., Huber R. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature. 1997 Apr 3;386(6624):463–471. doi: 10.1038/386463a0. [DOI] [PubMed] [Google Scholar]
  8. Guan C., Cui T., Rao V., Liao W., Benner J., Lin C. L., Comb D. Activation of glycosylasparaginase. Formation of active N-terminal threonine by intramolecular autoproteolysis. J Biol Chem. 1996 Jan 19;271(3):1732–1737. doi: 10.1074/jbc.271.3.1732. [DOI] [PubMed] [Google Scholar]
  9. Guo H. C., Xu Q., Buckley D., Guan C. Crystal structures of Flavobacterium glycosylasparaginase. An N-terminal nucleophile hydrolase activated by intramolecular proteolysis. J Biol Chem. 1998 Aug 7;273(32):20205–20212. doi: 10.1074/jbc.273.32.20205. [DOI] [PubMed] [Google Scholar]
  10. Isupov M. N., Obmolova G., Butterworth S., Badet-Denisot M. A., Badet B., Polikarpov I., Littlechild J. A., Teplyakov A. Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure. 1996 Jul 15;4(7):801–810. doi: 10.1016/s0969-2126(96)00087-1. [DOI] [PubMed] [Google Scholar]
  11. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  12. Löwe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995 Apr 28;268(5210):533–539. doi: 10.1126/science.7725097. [DOI] [PubMed] [Google Scholar]
  13. McDonough M. A., Klei H. E., Kelly J. A. Crystal structure of penicillin G acylase from the Bro1 mutant strain of Providencia rettgeri. Protein Sci. 1999 Oct;8(10):1971–1981. doi: 10.1110/ps.8.10.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muchmore C. R., Krahn J. M., Kim J. H., Zalkin H., Smith J. L. Crystal structure of glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Protein Sci. 1998 Jan;7(1):39–51. doi: 10.1002/pro.5560070104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oinonen C., Tikkanen R., Rouvinen J., Peltonen L. Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nat Struct Biol. 1995 Dec;2(12):1102–1108. doi: 10.1038/nsb1295-1102. [DOI] [PubMed] [Google Scholar]
  16. Russell R. B., Barton G. J. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins. 1992 Oct;14(2):309–323. doi: 10.1002/prot.340140216. [DOI] [PubMed] [Google Scholar]
  17. Seemuller E., Lupas A., Baumeister W. Autocatalytic processing of the 20S proteasome. Nature. 1996 Aug 1;382(6590):468–471. doi: 10.1038/382468a0. [DOI] [PubMed] [Google Scholar]
  18. Smith J. L., Zaluzec E. J., Wery J. P., Niu L., Switzer R. L., Zalkin H., Satow Y. Structure of the allosteric regulatory enzyme of purine biosynthesis. Science. 1994 Jun 3;264(5164):1427–1433. doi: 10.1126/science.8197456. [DOI] [PubMed] [Google Scholar]
  19. Suresh C. G., Pundle A. V., SivaRaman H., Rao K. N., Brannigan J. A., McVey C. E., Verma C. S., Dauter Z., Dodson E. J., Dodson G. G. Penicillin V acylase crystal structure reveals new Ntn-hydrolase family members. Nat Struct Biol. 1999 May;6(5):414–416. doi: 10.1038/8213. [DOI] [PubMed] [Google Scholar]
  20. Tikkanen R., Riikonen A., Oinonen C., Rouvinen R., Peltonen L. Functional analyses of active site residues of human lysosomal aspartylglucosaminidase: implications for catalytic mechanism and autocatalytic activation. EMBO J. 1996 Jun 17;15(12):2954–2960. [PMC free article] [PubMed] [Google Scholar]
  21. Xu Q., Buckley D., Guan C., Guo H. C. Structural insights into the mechanism of intramolecular proteolysis. Cell. 1999 Sep 3;98(5):651–661. doi: 10.1016/s0092-8674(00)80052-5. [DOI] [PubMed] [Google Scholar]
  22. Xuan J., Tarentino A. L., Grimwood B. G., Plummer T. H., Jr, Cui T., Guan C., Van Roey P. Crystal structure of glycosylasparaginase from Flavobacterium meningosepticum. Protein Sci. 1998 Mar;7(3):774–781. doi: 10.1002/pro.5560070327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zwickl P., Kleinz J., Baumeister W. Critical elements in proteasome assembly. Nat Struct Biol. 1994 Nov;1(11):765–770. doi: 10.1038/nsb1194-765. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES