Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Dec;9(12):2302–2312. doi: 10.1110/ps.9.12.2302

Cysteine-independent polymerization of metallothioneins in solutions and in crystals.

T Hou 1, Y An 1, B Ru 1, R Bi 1, X Xu 1
PMCID: PMC2144527  PMID: 11206051

Abstract

Polymerization of metallothioneins is one of the usually encountered puzzles during the research process of metallothioneins' structure and function. Our work focuses on the cysteine independently occurred polymerization from metallothioneins monomers in different milieus, while it leaves out the aggregation caused by the oxidation of cysteine, because the latter circumstance is the result of purification lapsus. After the purification of metallothioneins monomers, a dynamic light-scattering technique is used to detect the polymerized states of rabbit liver metallothionein I and II in different buffers, which is the first systematical detection of polymerized states of metallothioneins in solutions. The effects of different compositions of each buffer are discussed in details. Steric complementarity, hydrophobic, and electrostatic interaction characteristics are studied, following the modeling of monomers and relevant polymers of rat metallothionein II, rabbit liver metallothionein I and II. These theoretical calculations are the first complete computer simulations on different factors affecting metallothioneins' polymerization. A molecular recognition mechanism of metallothioneins' polymerization in solutions is proposed on the bases of experimental results and theoretical calculations. Preliminary X-ray studies of two crystal forms of rabbit liver metallothionein II are compared with the crystal structure of rat metallothionein II, and the polymerized states in crystal packing are discussed with the knowledge of polymerization of metallothioneins in solutions. The hypothesis, which is consistent with theoretical calculations and experimental results, is expected to construct a connection between the biochemical characteristics and physiological functions of metallothioneins, and this research may give some enlightenment to the topics of protein polymerizations.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An Y., Li G., Ru B. Crystallization and preliminary X-ray studies of metallothionein II from rabbit liver. Acta Crystallogr D Biol Crystallogr. 1999 Jun;55(Pt 6):1242–1243. doi: 10.1107/s0907444999005430. [DOI] [PubMed] [Google Scholar]
  2. Andersen R. A., Daae H. L., Mikalsen A., Alexander J. Occurrence of various forms of metallothionein in the rat after a short-term cadmium injection regimen. Comp Biochem Physiol C. 1989;93(2):367–375. doi: 10.1016/0742-8413(89)90249-1. [DOI] [PubMed] [Google Scholar]
  3. Andersen R. A., Daae H. L. Preparation of metallothionein from rat liver and studies of its properties with respect to use as a standard in gel permeation chromatography, polyacrylamide gel systems, autoradiography and Western blotting. Comp Biochem Physiol B. 1988;90(1):59–67. doi: 10.1016/0305-0491(88)90037-5. [DOI] [PubMed] [Google Scholar]
  4. Arthur J. R., Bremner I., Morrice P. C., Mills C. F. Stimulation of peroxidation in rat liver microsomes by (copper, zinc)-metallothioneins. Free Radic Res Commun. 1987;4(1):15–20. doi: 10.3109/10715768709088083. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee A., Maiti I. B. Purification and immunological characterization of catfish (Heteropneustes fossilis) metallothionein. Mol Cell Biochem. 1987 Nov;78(1):55–63. doi: 10.1007/BF00224424. [DOI] [PubMed] [Google Scholar]
  6. Gasull T., Rebollo D. V., Romero B., Hidalgo J. Development of a competitive double antibody radioimmunoassay for rat metallothionein. J Immunoassay. 1993 Dec;14(4):209–225. doi: 10.1080/15321819308019851. [DOI] [PubMed] [Google Scholar]
  7. Hidalgo J., Bernues J., Thomas D. G., Garvey J. S. Effect of 2-mercaptoethanol on the electrophoretic behavior of rat and dogfish metallothionein and chromatographic evidence of a naturally occurring metallothionein polymerization. Comp Biochem Physiol C. 1988;89(2):191–196. doi: 10.1016/0742-8413(88)90208-3. [DOI] [PubMed] [Google Scholar]
  8. Irons R. D., Smith J. C. Prevention by copper of cadmium sequestration by metallothionein in liver. Chem Biol Interact. 1976 Nov;15(3):289–294. doi: 10.1016/0009-2797(76)90154-x. [DOI] [PubMed] [Google Scholar]
  9. Kimura M., Koizumi S., Otsuka F. Detection of carboxymethylmetallothionein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methods Enzymol. 1991;205:114–119. doi: 10.1016/0076-6879(91)05093-b. [DOI] [PubMed] [Google Scholar]
  10. Kojima Y. Definitions and nomenclature of metallothioneins. Methods Enzymol. 1991;205:8–10. doi: 10.1016/0076-6879(91)05078-a. [DOI] [PubMed] [Google Scholar]
  11. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  12. Melis K. A., Carter D. C., Stout C. D., Winge D. R. Single crystals of cadmium, zinc metallothionein. J Biol Chem. 1983 May 25;258(10):6255–6257. [PubMed] [Google Scholar]
  13. Otsuka F., Koizumi S., Kimura M., Ohsawa M. Silver staining for carboxymethylated metallothioneins in polyacrylamide gels. Anal Biochem. 1988 Jan;168(1):184–192. doi: 10.1016/0003-2697(88)90027-9. [DOI] [PubMed] [Google Scholar]
  14. Palumaa P., Mackay E. A., Vasák M. Nonoxidative cadmium-dependent dimerization of Cd7-metallothionein from rabbit liver. Biochemistry. 1992 Feb 25;31(7):2181–2186. doi: 10.1021/bi00122a040. [DOI] [PubMed] [Google Scholar]
  15. Palumaa P., Vaher M. Metal-induced dimerization of Cd7-metallothionein. Role of anions. Ann Clin Lab Sci. 1996 May-Jun;26(3):264–268. [PubMed] [Google Scholar]
  16. Palumaa P., Vasák M. Binding of inorganic phosphate to the cadmium-induced dimeric form of metallothionein from rabbit liver. Eur J Biochem. 1992 May 1;205(3):1131–1135. doi: 10.1111/j.1432-1033.1992.tb16882.x. [DOI] [PubMed] [Google Scholar]
  17. Robbins A. H., McRee D. E., Williamson M., Collett S. A., Xuong N. H., Furey W. F., Wang B. C., Stout C. D. Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J Mol Biol. 1991 Oct 20;221(4):1269–1293. [PubMed] [Google Scholar]
  18. Robbins A. H., Stout C. D. X-ray structure of metallothionein. Methods Enzymol. 1991;205:485–502. doi: 10.1016/0076-6879(91)05134-h. [DOI] [PubMed] [Google Scholar]
  19. Tsai C. J., Lin S. L., Wolfson H. J., Nussinov R. Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci. 1997 Jan;6(1):53–64. doi: 10.1002/pro.5560060106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vallee B. L. Introduction to metallothionein. Methods Enzymol. 1991;205:3–7. doi: 10.1016/0076-6879(91)05077-9. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES