Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Dec;9(12):2366–2376. doi: 10.1110/ps.9.12.2366

Evolution of binding affinity in a WW domain probed by phage display.

P A Dalby 1, R H Hoess 1, W F DeGrado 1
PMCID: PMC2144528  PMID: 11206058

Abstract

The WW domain is an approximately 38 residue peptide-binding motif that binds a variety of sequences, including the consensus sequence xPPxY. We have displayed hYAP65 WW on the surface of M13 phage and randomized one-third of its three-stranded antiparallel beta-sheet. Improved binding to the hydrophobic peptide, GTPPPPYTVG (WW1), was selected in the presence of three different concentrations of proteinase K to simultaneously drive selection for improved stability as well as high-affinity binding. While some of the selected binders show cooperative unfolding transitions, others show noncooperative thermal unfolding curves. Two novel WW consensus sequences have been identified, which bind to the xPPxY motif with higher affinity than the wild-type hYAP65 WW domain. These WW domain sequences are not precedented in any natural WW domain sequence. Thus, there appear to be a large number of motifs capable of recognizing the target peptide sequence, only a subset of which appear to be used in natural proteins.

Full Text

The Full Text of this article is available as a PDF (917.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedford M. T., Reed R., Leder P. WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: the proline glycine and methionine-rich motif. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10602–10607. doi: 10.1073/pnas.95.18.10602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bedford M. T., Sarbassova D., Xu J., Leder P., Yaffe M. B. A novel pro-Arg motif recognized by WW domains. J Biol Chem. 2000 Apr 7;275(14):10359–10369. doi: 10.1074/jbc.275.14.10359. [DOI] [PubMed] [Google Scholar]
  4. Chen H. I., Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7819–7823. doi: 10.1073/pnas.92.17.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ermekova K. S., Zambrano N., Linn H., Minopoli G., Gertler F., Russo T., Sudol M. The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J Biol Chem. 1997 Dec 26;272(52):32869–32877. doi: 10.1074/jbc.272.52.32869. [DOI] [PubMed] [Google Scholar]
  6. Espanel X., Sudol M. A single point mutation in a group I WW domain shifts its specificity to that of group II WW domains. J Biol Chem. 1999 Jun 11;274(24):17284–17289. doi: 10.1074/jbc.274.24.17284. [DOI] [PubMed] [Google Scholar]
  7. Feng S., Chen J. K., Yu H., Simon J. A., Schreiber S. L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science. 1994 Nov 18;266(5188):1241–1247. doi: 10.1126/science.7526465. [DOI] [PubMed] [Google Scholar]
  8. Finucane M. D., Woolfson D. N. Core-directed protein design. II. Rescue of a multiply mutated and destabilized variant of ubiquitin. Biochemistry. 1999 Sep 7;38(36):11613–11623. doi: 10.1021/bi990766f. [DOI] [PubMed] [Google Scholar]
  9. Gunasekaran K., Ramakrishnan C., Balaram P. Beta-hairpins in proteins revisited: lessons for de novo design. Protein Eng. 1997 Oct;10(10):1131–1141. doi: 10.1093/protein/10.10.1131. [DOI] [PubMed] [Google Scholar]
  10. Jung S., Honegger A., Plückthun A. Selection for improved protein stability by phage display. J Mol Biol. 1999 Nov 19;294(1):163–180. doi: 10.1006/jmbi.1999.3196. [DOI] [PubMed] [Google Scholar]
  11. Koepf E. K., Petrassi H. M., Sudol M., Kelly J. W. WW: An isolated three-stranded antiparallel beta-sheet domain that unfolds and refolds reversibly; evidence for a structured hydrophobic cluster in urea and GdnHCl and a disordered thermal unfolded state. Protein Sci. 1999 Apr;8(4):841–853. doi: 10.1110/ps.8.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krebber C., Spada S., Desplancq D., Krebber A., Ge L., Pluckthun A. Selectively-infective phage (SIP): a mechanistic dissection of a novel in vivo selection for protein-ligand interactions. J Mol Biol. 1997 May 9;268(3):607–618. doi: 10.1006/jmbi.1997.0981. [DOI] [PubMed] [Google Scholar]
  13. Kristensen P., Winter G. Proteolytic selection for protein folding using filamentous bacteriophages. Fold Des. 1998;3(5):321–328. doi: 10.1016/S1359-0278(98)00044-3. [DOI] [PubMed] [Google Scholar]
  14. Lakshmikanth G. S., Krishnamoorthy G. Solvent-exposed tryptophans probe the dynamics at protein surfaces. Biophys J. 1999 Aug;77(2):1100–1106. doi: 10.1016/S0006-3495(99)76960-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liao H., Byeon I. J., Tsai M. D. Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. J Mol Biol. 1999 Dec 10;294(4):1041–1049. doi: 10.1006/jmbi.1999.3313. [DOI] [PubMed] [Google Scholar]
  16. Lim W. A., Richards F. M., Fox R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature. 1994 Nov 24;372(6504):375–379. doi: 10.1038/372375a0. [DOI] [PubMed] [Google Scholar]
  17. Linn H., Ermekova K. S., Rentschler S., Sparks A. B., Kay B. K., Sudol M. Using molecular repertoires to identify high-affinity peptide ligands of the WW domain of human and mouse YAP. Biol Chem. 1997 Jun;378(6):531–537. doi: 10.1515/bchm.1997.378.6.531. [DOI] [PubMed] [Google Scholar]
  18. Lu P. J., Zhou X. Z., Shen M., Lu K. P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science. 1999 Feb 26;283(5406):1325–1328. doi: 10.1126/science.283.5406.1325. [DOI] [PubMed] [Google Scholar]
  19. Macias M. J., Gervais V., Civera C., Oschkinat H. Structural analysis of WW domains and design of a WW prototype. Nat Struct Biol. 2000 May;7(5):375–379. doi: 10.1038/75144. [DOI] [PubMed] [Google Scholar]
  20. Macias M. J., Hyvönen M., Baraldi E., Schultz J., Sudol M., Saraste M., Oschkinat H. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature. 1996 Aug 15;382(6592):646–649. doi: 10.1038/382646a0. [DOI] [PubMed] [Google Scholar]
  21. Mosser E. A., Kasanov J. D., Forsberg E. C., Kay B. K., Ney P. A., Bresnick E. H. Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains. Biochemistry. 1998 Sep 29;37(39):13686–13695. doi: 10.1021/bi981310l. [DOI] [PubMed] [Google Scholar]
  22. Nguyen J. T., Turck C. W., Cohen F. E., Zuckermann R. N., Lim W. A. Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. Science. 1998 Dec 11;282(5396):2088–2092. doi: 10.1126/science.282.5396.2088. [DOI] [PubMed] [Google Scholar]
  23. O'Neil K. T., Hoess R. H., Jackson S. A., Ramachandran N. S., Mousa S. A., DeGrado W. F. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins. 1992 Dec;14(4):509–515. doi: 10.1002/prot.340140411. [DOI] [PubMed] [Google Scholar]
  24. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pawson T., Scott J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997 Dec 19;278(5346):2075–2080. doi: 10.1126/science.278.5346.2075. [DOI] [PubMed] [Google Scholar]
  26. Rajashankar K. R., Ramakumar S. Pi-turns in proteins and peptides: Classification, conformation, occurrence, hydration and sequence. Protein Sci. 1996 May;5(5):932–946. doi: 10.1002/pro.5560050515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ranganathan R., Lu K. P., Hunter T., Noel J. P. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell. 1997 Jun 13;89(6):875–886. doi: 10.1016/s0092-8674(00)80273-1. [DOI] [PubMed] [Google Scholar]
  28. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  29. Smith G. P. Filamentous phage assembly: morphogenetically defective mutants that do not kill the host. Virology. 1988 Nov;167(1):156–165. doi: 10.1016/0042-6822(88)90065-7. [DOI] [PubMed] [Google Scholar]
  30. Songyang Z., Cantley L. C. Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci. 1995 Nov;20(11):470–475. doi: 10.1016/s0968-0004(00)89103-3. [DOI] [PubMed] [Google Scholar]
  31. Sudol M. From Src Homology domains to other signaling modules: proposal of the 'protein recognition code'. Oncogene. 1998 Sep 17;17(11 REVIEWS):1469–1474. doi: 10.1038/sj.onc.1202182. [DOI] [PubMed] [Google Scholar]
  32. Verdecia M. A., Bowman M. E., Lu K. P., Hunter T., Noel J. P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol. 2000 Aug;7(8):639–643. doi: 10.1038/77929. [DOI] [PubMed] [Google Scholar]
  33. Viguera A. R., Arrondo J. L., Musacchio A., Saraste M., Serrano L. Characterization of the interaction of natural proline-rich peptides with five different SH3 domains. Biochemistry. 1994 Sep 13;33(36):10925–10933. doi: 10.1021/bi00202a011. [DOI] [PubMed] [Google Scholar]
  34. Zhou H. X., Hoess R. H., DeGrado W. F. In vitro evolution of thermodynamically stable turns. Nat Struct Biol. 1996 May;3(5):446–451. doi: 10.1038/nsb0596-446. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES