Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Dec;9(12):2413–2426. doi: 10.1110/ps.9.12.2413

Thermal stability of Clostridium pasteurianum rubredoxin: deconvoluting the contributions of the metal site and the protein.

F Bonomi 1, D Fessas 1, S Iametti 1, D M Kurtz Jr 1, S Mazzini 1
PMCID: PMC2144531  PMID: 11206063

Abstract

To provide a framework for understanding the hyperthermostability of some rubredoxins, a comprehensive analysis of the thermally induced denaturation of rubredoxin (Rd) from the mesophile, Clostridium pasteurianum was undertaken. Rds with three different metals in its M(SCys)4 site (M = Fe3+/2+, Zn2+, or Cd2+) were examined. Kinetics of metal ion release were monitored anaerobically at several fixed temperatures between 40 and 100 degrees C, and during progressive heating of the iron-containing protein. Both methods gave a thermal stability of metal binding in the order Fe2+ << Fe3+ < Zn2+ < Cd2+. The temperature at which half of the iron was released from the protein in temperature ramp experiments was 69 degrees C for Fe2+ Rd and 83 degrees C for Fe3+ Rd. Temperature-dependent changes in the protein structure were monitored by differential scanning calorimetry, tryptophan fluorescence, binding of a fluorescent hydrophobic probe, and 1H NMR. Major but reversible structural changes, consisting of swelling of the hydrophobic core and opening of a loop region, were found to occur at temperatures (50-70 degrees C) much lower than those required for loss of the metal ion. For the three divalent metal ions, the results suggest that the onset of the reversible, lower-temperature structural changes is dependent on the size of the MS4 site, whereas the final, irreversible loss of metal ion is dependent on the inherent M-SCys bond strength. In the case of Fe3+ Rd, stoichiometric Fe3+/cysteine-ligand redox chemistry also occurs during metal ion loss. The results indicate that thermally induced unfolding of the native Cp Rd must surmount a significant kinetic barrier caused by stabilizing interactions both within the protein and within the M(SCys)4 site.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake P. R., Park J. B., Bryant F. O., Aono S., Magnuson J. K., Eccleston E., Howard J. B., Summers M. F., Adams M. W. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Biochemistry. 1991 Nov 12;30(45):10885–10895. doi: 10.1021/bi00109a012. [DOI] [PubMed] [Google Scholar]
  2. Cairoli S., Iametti S., Bonomi F. Reversible and irreversible modifications of beta-lactoglobulin upon exposure to heat. J Protein Chem. 1994 Apr;13(3):347–354. doi: 10.1007/BF01901568. [DOI] [PubMed] [Google Scholar]
  3. Cavagnero S., Debe D. A., Zhou Z. H., Adams M. W., Chan S. I. Kinetic role of electrostatic interactions in the unfolding of hyperthermophilic and mesophilic rubredoxins. Biochemistry. 1998 Mar 10;37(10):3369–3376. doi: 10.1021/bi9721795. [DOI] [PubMed] [Google Scholar]
  4. Cavagnero S., Zhou Z. H., Adams M. W., Chan S. I. Unfolding mechanism of rubredoxin from Pyrococcus furiosus. Biochemistry. 1998 Mar 10;37(10):3377–3385. doi: 10.1021/bi9721804. [DOI] [PubMed] [Google Scholar]
  5. Dauter Z., Wilson K. S., Sieker L. C., Moulis J. M., Meyer J. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8836–8840. doi: 10.1073/pnas.93.17.8836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Day M. W., Hsu B. T., Joshua-Tor L., Park J. B., Zhou Z. H., Adams M. W., Rees D. C. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1494–1507. doi: 10.1002/pro.5560011111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  8. Eidsness M. K., O'Dell S. E., Kurtz D. M., Jr, Robson R. L., Scott R. A. Expression of a synthetic gene coding for the amino acid sequence of Clostridium pasteurianum rubredoxin. Protein Eng. 1992 Jun;5(4):367–371. doi: 10.1093/protein/5.4.367. [DOI] [PubMed] [Google Scholar]
  9. Eidsness M. K., Richie K. A., Burden A. E., Kurtz D. M., Jr, Scott R. A. Dissecting contributions to the thermostability of Pyrococcus furiosus rubredoxin: beta-sheet chimeras. Biochemistry. 1997 Aug 26;36(34):10406–10413. doi: 10.1021/bi970110r. [DOI] [PubMed] [Google Scholar]
  10. Gomes C. M., Silva G., Oliveira S., LeGall J., Liu M. Y., Xavier A. V., Rodrigues-Pousada C., Teixeira M. Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem. 1997 Sep 5;272(36):22502–22508. doi: 10.1074/jbc.272.36.22502. [DOI] [PubMed] [Google Scholar]
  11. Hiller R., Zhou Z. H., Adams M. W., Englander S. W. Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200 degrees C. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11329–11332. doi: 10.1073/pnas.94.21.11329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iametti S., De Gregori B., Vecchio G., Bonomi F. Modifications occur at different structural levels during the heat denaturation of beta-lactoglobulin. Eur J Biochem. 1996 Apr 1;237(1):106–112. doi: 10.1111/j.1432-1033.1996.0106n.x. [DOI] [PubMed] [Google Scholar]
  13. Lazaridis T., Lee I., Karplus M. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci. 1997 Dec;6(12):2589–2605. doi: 10.1002/pro.5560061211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ljones T., Burris R. H. Nitrogenase: the reaction between the Fe protein and bathophenanthrolinedisulfonate as a probe for interactions with MgATP. Biochemistry. 1978 May 16;17(10):1866–1872. doi: 10.1021/bi00603a010. [DOI] [PubMed] [Google Scholar]
  15. Lovenberg W., Walker M. N. Rubredoxin. Methods Enzymol. 1978;53:340–346. doi: 10.1016/s0076-6879(78)53039-5. [DOI] [PubMed] [Google Scholar]
  16. Pountney D. L., Vasák M. Spectroscopic studies on metal distribution in Co(II)/Zn(II) mixed-metal clusters in rabbit liver metallothionein 2. Eur J Biochem. 1992 Oct 1;209(1):335–341. doi: 10.1111/j.1432-1033.1992.tb17294.x. [DOI] [PubMed] [Google Scholar]
  17. Privalov P. L., Makhatadze G. I. Contribution of hydration and non-covalent interactions to the heat capacity effect on protein unfolding. J Mol Biol. 1992 Apr 5;224(3):715–723. doi: 10.1016/0022-2836(92)90555-x. [DOI] [PubMed] [Google Scholar]
  18. Privalov P. L., Makhatadze G. I. Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J Mol Biol. 1993 Jul 20;232(2):660–679. doi: 10.1006/jmbi.1993.1417. [DOI] [PubMed] [Google Scholar]
  19. Privalov P. L., Makhatadze G. I. Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol. 1990 May 20;213(2):385–391. doi: 10.1016/S0022-2836(05)80198-6. [DOI] [PubMed] [Google Scholar]
  20. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  21. Richie K. A., Teng Q., Elkin C. J., Kurtz D. M., Jr 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability. Protein Sci. 1996 May;5(5):883–894. doi: 10.1002/pro.5560050510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  23. Sturtevant J. M. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2236–2240. doi: 10.1073/pnas.74.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wampler J. E., Neuhaus E. B. A model for the unusual kinetics of thermal denaturation of rubredoxin. J Protein Chem. 1997 Oct;16(7):721–732. doi: 10.1023/a:1026362605769. [DOI] [PubMed] [Google Scholar]
  25. Werth M. T., Johnson M. K. Magnetic circular dichroism and electron paramagnetic resonance studies of iron(II)-metallothionein. Biochemistry. 1989 May 2;28(9):3982–3988. doi: 10.1021/bi00435a053. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES