Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Dec;9(12):2354–2365. doi: 10.1110/ps.9.12.2354

Backbone dynamics of sequence specific recognition and binding by the yeast Pho4 bHLH domain probed by NMR.

J W Cave 1, W Kremer 1, D E Wemmer 1
PMCID: PMC2144533  PMID: 11206057

Abstract

Backbone dynamics of the basic/helix-loop-helix domain of Pho4 from Saccharomyces cerevisae have been probed by NMR techniques, in the absence of DNA, nonspecifically bound to DNA and bound to cognate DNA. Alpha proton chemical shift indices and nuclear Overhauser effect patterns were used to elucidate the secondary structure in these states. These secondary structures are compared to the co-crystal complex of Pho4 bound to a cognate DNA sequence (Shimizu T. Toumoto A, Ihara K, Shimizu M, Kyogou Y, Ogawa N, Oshima Y, Hakoshima T, 1997, EMBO J 15: 4689-4697). The dynamic information provides insight into the nature of this DNA binding domain as it progresses from free in solution to a specifically bound DNA complex. Relative to the unbound form, we show that formation of either the nonspecific and cognate DNA bound complexes involves a large change in conformation and backbone dynamics of the basic region. The nonspecific and cognate complexes, however, have nearly identical secondary structure and backbone dynamics. We also present evidence for conformational flexibility at a highly conserved glutamate basic region residue. These results are discussed in relation to the mechanism of sequence specific recognition and binding.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony-Cahill S. J., Benfield P. A., Fairman R., Wasserman Z. R., Brenner S. L., Stafford W. F., 3rd, Altenbach C., Hubbell W. L., DeGrado W. F. Molecular characterization of helix-loop-helix peptides. Science. 1992 Feb 21;255(5047):979–983. doi: 10.1126/science.1312255. [DOI] [PubMed] [Google Scholar]
  2. Barbaric S., Münsterkötter M., Goding C., Hörz W. Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2. Mol Cell Biol. 1998 May;18(5):2629–2639. doi: 10.1128/mcb.18.5.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barbarić S., Münsterkötter M., Svaren J., Hörz W. The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter. Nucleic Acids Res. 1996 Nov 15;24(22):4479–4486. doi: 10.1093/nar/24.22.4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbato G., Ikura M., Kay L. E., Pastor R. W., Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 1992 Jun 16;31(23):5269–5278. doi: 10.1021/bi00138a005. [DOI] [PubMed] [Google Scholar]
  5. Bracken C., Carr P. A., Cavanagh J., Palmer A. G., 3rd Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J Mol Biol. 1999 Feb 5;285(5):2133–2146. doi: 10.1006/jmbi.1998.2429. [DOI] [PubMed] [Google Scholar]
  6. Brüschweiler R., Liao X., Wright P. E. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science. 1995 May 12;268(5212):886–889. doi: 10.1126/science.7754375. [DOI] [PubMed] [Google Scholar]
  7. Ellenberger T., Fass D., Arnaud M., Harrison S. C. Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev. 1994 Apr 15;8(8):970–980. doi: 10.1101/gad.8.8.970. [DOI] [PubMed] [Google Scholar]
  8. Fairman R., Beran-Steed R. K., Handel T. M. Heteronuclear (1H, 13C, 15N) NMR assignments and secondary structure of the basic region-helix-loop-helix domain of E47. Protein Sci. 1997 Jan;6(1):175–184. doi: 10.1002/pro.5560060120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farrow N. A., Zhang O., Szabo A., Torchia D. A., Kay L. E. Spectral density function mapping using 15N relaxation data exclusively. J Biomol NMR. 1995 Sep;6(2):153–162. doi: 10.1007/BF00211779. [DOI] [PubMed] [Google Scholar]
  10. Ferré-D'Amaré A. R., Pognonec P., Roeder R. G., Burley S. K. Structure and function of the b/HLH/Z domain of USF. EMBO J. 1994 Jan 1;13(1):180–189. doi: 10.1002/j.1460-2075.1994.tb06247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferré-D'Amaré A. R., Prendergast G. C., Ziff E. B., Burley S. K. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature. 1993 May 6;363(6424):38–45. doi: 10.1038/363038a0. [DOI] [PubMed] [Google Scholar]
  12. Garrell J., Campuzano S. The helix-loop-helix domain: a common motif for bristles, muscles and sex. Bioessays. 1991 Oct;13(10):493–498. doi: 10.1002/bies.950131002. [DOI] [PubMed] [Google Scholar]
  13. Gewirth D. T., Sigler P. B. The basis for half-site specificity explored through a non-cognate steroid receptor-DNA complex. Nat Struct Biol. 1995 May;2(5):386–394. doi: 10.1038/nsb0595-386. [DOI] [PubMed] [Google Scholar]
  14. Gilliquet V., Berben G. Positive and negative regulators of the Saccharomyces cerevisiae 'PHO system' participate in several cell functions. FEMS Microbiol Lett. 1993 Apr 15;108(3):333–339. doi: 10.1111/j.1574-6968.1993.tb06124.x. [DOI] [PubMed] [Google Scholar]
  15. Hirst K., Fisher F., McAndrew P. C., Goding C. R. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal. EMBO J. 1994 Nov 15;13(22):5410–5420. doi: 10.1002/j.1460-2075.1994.tb06876.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ishima R., Nagayama K. Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry. 1995 Mar 14;34(10):3162–3171. doi: 10.1021/bi00010a005. [DOI] [PubMed] [Google Scholar]
  17. Jen-Jacobson L. Protein-DNA recognition complexes: conservation of structure and binding energy in the transition state. Biopolymers. 1997;44(2):153–180. doi: 10.1002/(SICI)1097-0282(1997)44:2<153::AID-BIP4>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  18. Johnson N. P., Lindstrom J., Baase W. A., von Hippel P. H. Double-stranded DNA templates can induce alpha-helical conformation in peptides containing lysine and alanine: functional implications for leucine zipper and helix-loop-helix transcription factors. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4840–4844. doi: 10.1073/pnas.91.11.4840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. K-unne A. G., Sieber M., Meierhans D., Allemann R. K. Thermodynamics of the DNA binding reaction of transcription factor MASH-1. Biochemistry. 1998 Mar 24;37(12):4217–4223. doi: 10.1021/bi9725374. [DOI] [PubMed] [Google Scholar]
  20. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  21. Kaffman A., Rank N. M., O'Neill E. M., Huang L. S., O'Shea E. K. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature. 1998 Dec 3;396(6710):482–486. doi: 10.1038/24898. [DOI] [PubMed] [Google Scholar]
  22. Kaffman A., Rank N. M., O'Shea E. K. Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse1/Kap121. Genes Dev. 1998 Sep 1;12(17):2673–2683. doi: 10.1101/gad.12.17.2673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lee L. K., Rance M., Chazin W. J., Palmer A. G., 3rd Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation. J Biomol NMR. 1997 Apr;9(3):287–298. doi: 10.1023/a:1018631009583. [DOI] [PubMed] [Google Scholar]
  24. Littlewood T. D., Evan G. I. Transcription factors 2: helix-loop-helix. Protein Profile. 1995;2(6):621–702. [PubMed] [Google Scholar]
  25. Ma P. C., Rould M. A., Weintraub H., Pabo C. O. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell. 1994 May 6;77(3):451–459. doi: 10.1016/0092-8674(94)90159-7. [DOI] [PubMed] [Google Scholar]
  26. Meierhan D., el-Ariss C., Neuenschwander M., Sieber M., Stackhouse J. F., Allemann R. K. DNA binding specificity of the basic-helix-loop-helix protein MASH-1. Biochemistry. 1995 Sep 5;34(35):11026–11036. doi: 10.1021/bi00035a008. [DOI] [PubMed] [Google Scholar]
  27. Mori S., Abeygunawardana C., Johnson M. O., van Zijl P. C. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B. 1995 Jul;108(1):94–98. doi: 10.1006/jmrb.1995.1109. [DOI] [PubMed] [Google Scholar]
  28. Murre C., McCaw P. S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. doi: 10.1016/0092-8674(89)90682-x. [DOI] [PubMed] [Google Scholar]
  29. O'Neil K. T., Shuman J. D., Ampe C., DeGrado W. F. DNA-induced increase in the alpha-helical content of C/EBP and GCN4. Biochemistry. 1991 Sep 17;30(37):9030–9034. doi: 10.1021/bi00101a017. [DOI] [PubMed] [Google Scholar]
  30. O'Neill E. M., Kaffman A., Jolly E. R., O'Shea E. K. Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex. Science. 1996 Jan 12;271(5246):209–212. doi: 10.1126/science.271.5246.209. [DOI] [PubMed] [Google Scholar]
  31. Ogawa N., Oshima Y. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2224–2236. doi: 10.1128/mcb.10.5.2224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Párraga A., Bellsolell L., Ferré-D'Amaré A. R., Burley S. K. Co-crystal structure of sterol regulatory element binding protein 1a at 2.3 A resolution. Structure. 1998 May 15;6(5):661–672. doi: 10.1016/s0969-2126(98)00067-7. [DOI] [PubMed] [Google Scholar]
  33. Saudek V., Pasley H. S., Gibson T., Gausepohl H., Frank R., Pastore A. Solution structure of the basic region from the transcriptional activator GCN4. Biochemistry. 1991 Feb 5;30(5):1310–1317. doi: 10.1021/bi00219a022. [DOI] [PubMed] [Google Scholar]
  34. Schneider K. R., Smith R. L., O'Shea E. K. Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81. Science. 1994 Oct 7;266(5182):122–126. doi: 10.1126/science.7939631. [DOI] [PubMed] [Google Scholar]
  35. Schurr J. M., Babcock H. P., Fujimoto B. S. A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization. J Magn Reson B. 1994 Nov;105(3):211–224. doi: 10.1006/jmrb.1994.1127. [DOI] [PubMed] [Google Scholar]
  36. Shao D., Creasy C. L., Bergman L. W. Interaction of Saccharomyces cerevisiae Pho2 with Pho4 increases the accessibility of the activation domain of Pho4. Mol Gen Genet. 1996 Jun 12;251(3):358–364. doi: 10.1007/BF02172527. [DOI] [PubMed] [Google Scholar]
  37. Shimizu T., Toumoto A., Ihara K., Shimizu M., Kyogoku Y., Ogawa N., Oshima Y., Hakoshima T. Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO J. 1997 Aug 1;16(15):4689–4697. doi: 10.1093/emboj/16.15.4689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  39. Talanian R. V., McKnight C. J., Rutkowski R., Kim P. S. Minimum length of a sequence-specific DNA binding peptide. Biochemistry. 1992 Aug 4;31(30):6871–6875. doi: 10.1021/bi00145a002. [DOI] [PubMed] [Google Scholar]
  40. Talluri S., Wagner G. An optimized 3D NOESY-HSQC. J Magn Reson B. 1996 Aug;112(2):200–205. doi: 10.1006/jmrb.1996.0132. [DOI] [PubMed] [Google Scholar]
  41. Vogel K., Hörz W., Hinnen A. The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions. Mol Cell Biol. 1989 May;9(5):2050–2057. doi: 10.1128/mcb.9.5.2050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weiss M. A. Thermal unfolding studies of a leucine zipper domain and its specific DNA complex: implications for scissor's grip recognition. Biochemistry. 1990 Sep 4;29(35):8020–8024. doi: 10.1021/bi00487a004. [DOI] [PubMed] [Google Scholar]
  43. Winkler F. K., Banner D. W., Oefner C., Tsernoglou D., Brown R. S., Heathman S. P., Bryan R. K., Martin P. D., Petratos K., Wilson K. S. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 1993 May;12(5):1781–1795. doi: 10.2210/pdb4rve/pdb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Winston R. L., Millar D. P., Gottesfeld J. M., Kent S. B. Characterization of the DNA binding properties of the bHLH domain of Deadpan to single and tandem sites. Biochemistry. 1999 Apr 20;38(16):5138–5146. doi: 10.1021/bi982856a. [DOI] [PubMed] [Google Scholar]
  45. Wishart D. S., Sykes B. D. Chemical shifts as a tool for structure determination. Methods Enzymol. 1994;239:363–392. doi: 10.1016/s0076-6879(94)39014-2. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES