Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Feb;9(2):344–352. doi: 10.1110/ps.9.2.344

Proline inhibits aggregation during protein refolding.

D Samuel 1, T K Kumar 1, G Ganesh 1, G Jayaraman 1, P W Yang 1, M M Chang 1, V D Trivedi 1, S L Wang 1, K C Hwang 1, D K Chang 1, C Yu 1
PMCID: PMC2144545  PMID: 10716186

Abstract

The in vitro refolding of hen egg-white lysozyme is studied in the presence of various osmolytes. Proline is found to prevent aggregation during protein refolding. However, other osmolytes used in this study fail to exhibit a similar property. Experimental evidence suggests that proline inhibits protein aggregation by binding to folding intermediate(s) and trapping the folding intermediate(s) into enzymatically inactive, "aggregation-insensitive" state(s). However, elimination of proline from the refolded protein mixture results in significant recovery of the bacteriolytic activity. At higher concentrations (>1.5 M), proline is shown to form loose, higher-order molecular aggregate(s). The supramolecular assembly of proline is found to possess an amphipathic character. Formation of higher-order aggregates is believed to be crucial for proline to function as a protein folding aid. In addition to its role in osmoregulation under water stress conditions, the results of this study hint at the possibility of proline behaving as a protein folding chaperone.

Full Text

The Full Text of this article is available as a PDF (309.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown A. D., Simpson J. R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol. 1972 Oct;72(3):589–591. doi: 10.1099/00221287-72-3-589. [DOI] [PubMed] [Google Scholar]
  2. Cleland J. L., Wang D. I. Refolding and aggregation of bovine carbonic anhydrase B: quasi-elastic light scattering analysis. Biochemistry. 1990 Dec 18;29(50):11072–11078. doi: 10.1021/bi00502a009. [DOI] [PubMed] [Google Scholar]
  3. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  4. Goldberg M. E., Rudolph R., Jaenicke R. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry. 1991 Mar 19;30(11):2790–2797. doi: 10.1021/bi00225a008. [DOI] [PubMed] [Google Scholar]
  5. Karuppiah N., Sharma A. Cyclodextrins as protein folding aids. Biochem Biophys Res Commun. 1995 Jun 6;211(1):60–66. doi: 10.1006/bbrc.1995.1778. [DOI] [PubMed] [Google Scholar]
  6. Kirk W. R., Kurian E., Prendergast F. G. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein. Biophys J. 1996 Jan;70(1):69–83. doi: 10.1016/S0006-3495(96)79592-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kumar T. K., Gopalakrishna K., Ramakrishna T., Pandit M. W. Refolding of RNAse A at high concentrations: identification of non-native species. Int J Biol Macromol. 1994 Aug;16(4):171–176. doi: 10.1016/0141-8130(94)90047-7. [DOI] [PubMed] [Google Scholar]
  8. Kumar T. K., Jayaraman G., Lee C. S., Sivaraman T., Lin W. Y., Yu C. Identification of 'molten globule'-like state in all beta-sheet protein. Biochem Biophys Res Commun. 1995 Feb 15;207(2):536–543. doi: 10.1006/bbrc.1995.1221. [DOI] [PubMed] [Google Scholar]
  9. Kumar T. K., Yang P. W., Lin S. H., Wu C. Y., Lei B., Lo S. J., Tu S. C., Yu C. Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli. Biochem Biophys Res Commun. 1996 Feb 15;219(2):450–456. doi: 10.1006/bbrc.1996.0254. [DOI] [PubMed] [Google Scholar]
  10. Lin T. Y., Timasheff S. N. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry. 1994 Oct 25;33(42):12695–12701. doi: 10.1021/bi00208a021. [DOI] [PubMed] [Google Scholar]
  11. Liu Y., Bolen D. W. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry. 1995 Oct 3;34(39):12884–12891. doi: 10.1021/bi00039a051. [DOI] [PubMed] [Google Scholar]
  12. Marston F. A. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J. 1986 Nov 15;240(1):1–12. doi: 10.1042/bj2400001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matulis D., Lovrien R. 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys J. 1998 Jan;74(1):422–429. doi: 10.1016/S0006-3495(98)77799-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orsini G., Goldberg M. E. The renaturation of reduced chymotrypsinogen A in guanidine HCl. Refolding versus aggregation. J Biol Chem. 1978 May 25;253(10):3453–3458. [PubMed] [Google Scholar]
  15. Orsini G., Skrzynia C., Goldberg M. E. The renaturation of reduced polyalanyl-chymotrypsinogen and chymotrypsinogen. Eur J Biochem. 1975 Nov 15;59(2):433–440. doi: 10.1111/j.1432-1033.1975.tb02471.x. [DOI] [PubMed] [Google Scholar]
  16. Ptitsyn O. B., Pain R. H., Semisotnov G. V., Zerovnik E., Razgulyaev O. I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 1990 Mar 12;262(1):20–24. doi: 10.1016/0014-5793(90)80143-7. [DOI] [PubMed] [Google Scholar]
  17. Rozema D., Gellman S. H. Artificial chaperone-assisted refolding of carbonic anhydrase B. J Biol Chem. 1996 Feb 16;271(7):3478–3487. doi: 10.1074/jbc.271.7.3478. [DOI] [PubMed] [Google Scholar]
  18. Rozema D., Gellman S. H. Artificial chaperone-assisted refolding of denatured-reduced lysozyme: modulation of the competition between renaturation and aggregation. Biochemistry. 1996 Dec 10;35(49):15760–15771. doi: 10.1021/bi961638j. [DOI] [PubMed] [Google Scholar]
  19. Samuel D., Kumar T. K., Jayaraman G., Yang P. W., Yu C. Proline is a protein solubilizing solute. Biochem Mol Biol Int. 1997 Feb;41(2):235–242. doi: 10.1080/15216549700201241. [DOI] [PubMed] [Google Scholar]
  20. Saxena V. P., Wetlaufer D. B. Formation of three-dimensional structure in proteins. I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry. 1970 Dec 8;9(25):5015–5023. doi: 10.1021/bi00827a028. [DOI] [PubMed] [Google Scholar]
  21. Schobert B., Tschesche H. Unusual solution properties of proline and its interaction with proteins. Biochim Biophys Acta. 1978 Jun 15;541(2):270–277. doi: 10.1016/0304-4165(78)90400-2. [DOI] [PubMed] [Google Scholar]
  22. Semisotnov G. V., Uversky V. N., Sokolovsky I. V., Gutin A. M., Razgulyaev O. I., Rodionova N. A. Two slow stages in refolding of bovine carbonic anhydrase B are due to proline isomerization. J Mol Biol. 1990 Jun 5;213(3):561–568. doi: 10.1016/S0022-2836(05)80215-3. [DOI] [PubMed] [Google Scholar]
  23. Sivaraman T., Kumar T. K., Jayaraman G., Han C. C., Yu C. Characterization of a partially structured state in an all-beta-sheet protein. Biochem J. 1997 Jan 15;321(Pt 2):457–464. doi: 10.1042/bj3210457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sivaraman T., Kumar T. K., Jayaraman G., Yu C. The mechanism of 2,2,2-trichloroacetic acid-induced protein precipitation. J Protein Chem. 1997 May;16(4):291–297. doi: 10.1023/a:1026357009886. [DOI] [PubMed] [Google Scholar]
  25. Tandon S., Horowitz P. Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effect of lauryl maltoside. J Biol Chem. 1986 Nov 25;261(33):15615–15618. [PubMed] [Google Scholar]
  26. Thomas P. J., Qu B. H., Pedersen P. L. Defective protein folding as a basis of human disease. Trends Biochem Sci. 1995 Nov;20(11):456–459. doi: 10.1016/s0968-0004(00)89100-8. [DOI] [PubMed] [Google Scholar]
  27. Wang A., Bolen D. W. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry. 1997 Jul 29;36(30):9101–9108. doi: 10.1021/bi970247h. [DOI] [PubMed] [Google Scholar]
  28. Wang A., Bolen D. W. Effect of proline on lactate dehydrogenase activity: testing the generality and scope of the compatibility paradigm. Biophys J. 1996 Oct;71(4):2117–2122. doi: 10.1016/S0006-3495(96)79410-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wetlaufer D. B., Xie Y. Control of aggregation in protein refolding: a variety of surfactants promote renaturation of carbonic anhydrase II. Protein Sci. 1995 Aug;4(8):1535–1543. doi: 10.1002/pro.5560040811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wetzel R. Mutations and off-pathway aggregation of proteins. Trends Biotechnol. 1994 May;12(5):193–198. doi: 10.1016/0167-7799(94)90082-5. [DOI] [PubMed] [Google Scholar]
  31. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  32. Zardeneta G., Horowitz P. M. Micelle-assisted protein folding. Denatured rhodanese binding to cardiolipin-containing lauryl maltoside micelles results in slower refolding kinetics but greater enzyme reactivation. J Biol Chem. 1992 Mar 25;267(9):5811–5816. [PubMed] [Google Scholar]
  33. Zettlmeissl G., Rudolph R., Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry. 1979 Dec 11;18(25):5567–5571. doi: 10.1021/bi00592a007. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES