Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Feb;9(2):290–301. doi: 10.1110/ps.9.2.290

Microscopic stability of cold shock protein A examined by NMR native state hydrogen exchange as a function of urea and trimethylamine N-oxide.

V A Jaravine 1, K Rathgeb-Szabo 1, A T Alexandrescu 1
PMCID: PMC2144546  PMID: 10716181

Abstract

Native state hydrogen exchange of cold shock protein A (CspA) has been characterized as a function of the denaturant urea and of the stabilizing agent trimethylamine N-oxide (TMAO). The structure of CspA has five strands of beta-sheet. Strands beta1-beta4 have strongly protected amide protons that, based on experiments as a function of urea, exchange through a simple all-or-none global unfolding mechanism. By contrast, the protection of amide protons from strand beta5 is too weak to measure in water. Strand beta5 is hydrogen bonded to strands beta3 and beta4, both of which afford strong protection from solvent exchange. Gaussian network model (GNM) simulations, which assume that the degree of protection depends on tertiary contact density in the native structure, accurately predict the strong protection observed in strands beta1-beta4 but fail to account for the weak protection in strand beta5. The most conspicuous feature of strand beta5 is its low sequence hydrophobicity. In the presence of TMAO, there is an increase in the protection of strands beta1-beta4, and protection extends to amide protons in more hydrophilic segments of the protein, including strand beta5 and the loops connecting the beta-strands. TMAO stabilizes proteins by raising the free energy of the denatured state, due to highly unfavorable interactions between TMAO and the exposed peptide backbone. As such, the stabilizing effects of TMAO are expected to be relatively independent of sequence hydrophobicity. The present results suggest that the magnitude of solvent exchange protection depends more on solvent accessibility in the ensemble of exchange susceptible conformations than on the strength of hydrogen-bonding interactions in the native structure.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandrescu A. T., Jaravine V. A., Dames S. A., Lamour F. P. NMR hydrogen exchange of the OB-fold protein LysN as a function of denaturant: the most conserved elements of structure are the most stable to unfolding. J Mol Biol. 1999 Jun 18;289(4):1041–1054. doi: 10.1006/jmbi.1999.2813. [DOI] [PubMed] [Google Scholar]
  2. Alexandrescu A. T., Rathgeb-Szabo K. An NMR investigation of solution aggregation reactions preceding the misassembly of acid-denatured cold shock protein A into fibrils. J Mol Biol. 1999 Sep 3;291(5):1191–1206. doi: 10.1006/jmbi.1999.3039. [DOI] [PubMed] [Google Scholar]
  3. Alexandrescu A. T., Rathgeb-Szabo K. NMR assignments for acid-denatured cold shock protein A. J Biomol NMR. 1998 May;11(4):461–462. doi: 10.1023/a:1008283925446. [DOI] [PubMed] [Google Scholar]
  4. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  5. Bahar I., Wallqvist A., Covell D. G., Jernigan R. L. Correlation between native-state hydrogen exchange and cooperative residue fluctuations from a simple model. Biochemistry. 1998 Jan 27;37(4):1067–1075. doi: 10.1021/bi9720641. [DOI] [PubMed] [Google Scholar]
  6. Bai Y., Englander S. W. Future directions in folding: the multi-state nature of protein structure. Proteins. 1996 Feb;24(2):145–151. doi: 10.1002/(SICI)1097-0134(199602)24:2<145::AID-PROT1>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  7. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bai Y., Milne J. S., Mayne L., Englander S. W. Protein stability parameters measured by hydrogen exchange. Proteins. 1994 Sep;20(1):4–14. doi: 10.1002/prot.340200103. [DOI] [PubMed] [Google Scholar]
  9. Bai Y., Sosnick T. R., Mayne L., Englander S. W. Protein folding intermediates: native-state hydrogen exchange. Science. 1995 Jul 14;269(5221):192–197. doi: 10.1126/science.7618079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Baskakov I. V., Kumar R., Srinivasan G., Ji Y. S., Bolen D. W., Thompson E. B. Trimethylamine N-oxide-induced cooperative folding of an intrinsically unfolded transcription-activating fragment of human glucocorticoid receptor. J Biol Chem. 1999 Apr 16;274(16):10693–10696. doi: 10.1074/jbc.274.16.10693. [DOI] [PubMed] [Google Scholar]
  11. Baskakov I., Bolen D. W. Forcing thermodynamically unfolded proteins to fold. J Biol Chem. 1998 Feb 27;273(9):4831–4834. doi: 10.1074/jbc.273.9.4831. [DOI] [PubMed] [Google Scholar]
  12. Brown C. R., Hong-Brown L. Q., Biwersi J., Verkman A. S., Welch W. J. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones. 1996 Jun;1(2):117–125. doi: 10.1379/1466-1268(1996)001<0117:ccctmp>2.3.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chamberlain A. K., Handel T. M., Marqusee S. Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH. Nat Struct Biol. 1996 Sep;3(9):782–787. doi: 10.1038/nsb0996-782. [DOI] [PubMed] [Google Scholar]
  14. Chamberlain A. K., Marqusee S. Molten globule unfolding monitored by hydrogen exchange in urea. Biochemistry. 1998 Feb 17;37(7):1736–1742. doi: 10.1021/bi972692i. [DOI] [PubMed] [Google Scholar]
  15. Chatterjee S., Jiang W., Emerson S. D., Inouye M. The backbone structure of the major cold-shock protein CS7.4 of Escherichia coli in solution includes extensive beta-sheet structure. J Biochem. 1993 Nov;114(5):663–669. doi: 10.1093/oxfordjournals.jbchem.a124234. [DOI] [PubMed] [Google Scholar]
  16. Clarke J., Fersht A. R. An evaluation of the use of hydrogen exchange at equilibrium to probe intermediates on the protein folding pathway. Fold Des. 1996;1(4):243–254. doi: 10.1016/S1359-0278(96)00038-7. [DOI] [PubMed] [Google Scholar]
  17. Clarke J., Itzhaki L. S., Fersht A. R. Hydrogen exchange at equilibrium: a short cut for analysing protein-folding pathways? Trends Biochem Sci. 1997 Aug;22(8):284–287. doi: 10.1016/s0968-0004(97)01087-6. [DOI] [PubMed] [Google Scholar]
  18. Dill K. A., Chan H. S. From Levinthal to pathways to funnels. Nat Struct Biol. 1997 Jan;4(1):10–19. doi: 10.1038/nsb0197-10. [DOI] [PubMed] [Google Scholar]
  19. Feng W., Tejero R., Zimmerman D. E., Inouye M., Montelione G. T. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry. 1998 Aug 4;37(31):10881–10896. doi: 10.1021/bi980269j. [DOI] [PubMed] [Google Scholar]
  20. Fersht A. R. Nucleation mechanisms in protein folding. Curr Opin Struct Biol. 1997 Feb;7(1):3–9. doi: 10.1016/s0959-440x(97)80002-4. [DOI] [PubMed] [Google Scholar]
  21. Foord R. L., Leatherbarrow R. J. Effect of osmolytes on the exchange rates of backbone amide protons in proteins. Biochemistry. 1998 Mar 3;37(9):2969–2978. doi: 10.1021/bi9712798. [DOI] [PubMed] [Google Scholar]
  22. Fuentes E. J., Wand A. J. Local dynamics and stability of apocytochrome b562 examined by hydrogen exchange. Biochemistry. 1998 Mar 17;37(11):3687–3698. doi: 10.1021/bi972579s. [DOI] [PubMed] [Google Scholar]
  23. Harrison S. C., Durbin R. Is there a single pathway for the folding of a polypeptide chain? Proc Natl Acad Sci U S A. 1985 Jun;82(12):4028–4030. doi: 10.1073/pnas.82.12.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Itzhaki L. S., Neira J. L., Fersht A. R. Hydrogen exchange in chymotrypsin inhibitor 2 probed by denaturants and temperature. J Mol Biol. 1997 Jul 4;270(1):89–98. doi: 10.1006/jmbi.1997.1049. [DOI] [PubMed] [Google Scholar]
  25. Jackson S. E. How do small single-domain proteins fold? Fold Des. 1998;3(4):R81–R91. doi: 10.1016/S1359-0278(98)00033-9. [DOI] [PubMed] [Google Scholar]
  26. Jiang W., Hou Y., Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem. 1997 Jan 3;272(1):196–202. doi: 10.1074/jbc.272.1.196. [DOI] [PubMed] [Google Scholar]
  27. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  28. Lin T. Y., Timasheff S. N. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry. 1994 Oct 25;33(42):12695–12701. doi: 10.1021/bi00208a021. [DOI] [PubMed] [Google Scholar]
  29. Liu Y., Bolen D. W. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry. 1995 Oct 3;34(39):12884–12891. doi: 10.1021/bi00039a051. [DOI] [PubMed] [Google Scholar]
  30. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  31. Murzin A. G. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 1993 Mar;12(3):861–867. doi: 10.1002/j.1460-2075.1993.tb05726.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  33. Perl D., Welker C., Schindler T., Schröder K., Marahiel M. A., Jaenicke R., Schmid F. X. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nat Struct Biol. 1998 Mar;5(3):229–235. doi: 10.1038/nsb0398-229. [DOI] [PubMed] [Google Scholar]
  34. Reid K. L., Rodriguez H. M., Hillier B. J., Gregoret L. M. Stability and folding properties of a model beta-sheet protein, Escherichia coli CspA. Protein Sci. 1998 Feb;7(2):470–479. doi: 10.1002/pro.5560070228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schindelin H., Jiang W., Inouye M., Heinemann U. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5119–5123. doi: 10.1073/pnas.91.11.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schindler T., Herrler M., Marahiel M. A., Schmid F. X. Extremely rapid protein folding in the absence of intermediates. Nat Struct Biol. 1995 Aug;2(8):663–673. doi: 10.1038/nsb0895-663. [DOI] [PubMed] [Google Scholar]
  37. Schindler T., Schmid F. X. Thermodynamic properties of an extremely rapid protein folding reaction. Biochemistry. 1996 Dec 24;35(51):16833–16842. doi: 10.1021/bi962090j. [DOI] [PubMed] [Google Scholar]
  38. Tanford C. The hydrophobic effect and the organization of living matter. Science. 1978 Jun 2;200(4345):1012–1018. doi: 10.1126/science.653353. [DOI] [PubMed] [Google Scholar]
  39. Wang A., Bolen D. W. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry. 1997 Jul 29;36(30):9101–9108. doi: 10.1021/bi970247h. [DOI] [PubMed] [Google Scholar]
  40. Wang A., Robertson A. D., Bolen D. W. Effects of a naturally occurring compatible osmolyte on the internal dynamics of ribonuclease A. Biochemistry. 1995 Nov 21;34(46):15096–15104. doi: 10.1021/bi00046a016. [DOI] [PubMed] [Google Scholar]
  41. Wolffe A. P. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays. 1994 Apr;16(4):245–251. doi: 10.1002/bies.950160407. [DOI] [PubMed] [Google Scholar]
  42. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  43. Yi Q., Scalley M. L., Simons K. T., Gladwin S. T., Baker D. Characterization of the free energy spectrum of peptostreptococcal protein L. Fold Des. 1997;2(5):271–280. doi: 10.1016/S1359-0278(97)00038-2. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES