Abstract
The crystal structure of ligand-free tryptophanyl-tRNA synthetase (TrpRS) was solved at 2.9 A using a combination of molecular replacement and maximum-entropy map/phase improvement. The dimeric structure (R = 23.7, Rfree = 26.2) is asymmetric, unlike that of the TrpRS tryptophanyl-5'AMP complex (TAM; Doublié S, Bricogne G, Gilmore CJ, Carter CW Jr, 1995, Structure 3:17-31). In agreement with small-angle solution X-ray scattering experiments, unliganded TrpRS has a conformation in which both monomers open, leaving only the tryptophan-binding regions of their active sites intact. The amino terminal alphaA-helix, TIGN, and KMSKS signature sequences, and the distal helical domain rotate as a single rigid body away from the dinucleotide-binding fold domain, opening the AMP binding site, seen in the TAM complex, into two halves. Comparison of side-chain packing in ligand-free TrpRS and the TAM complex, using identification of nonpolar nuclei (Ilyin VA, 1994, Protein Eng 7:1189-1195), shows that significant repacking occurs between three relatively stable core regions, one of which acts as a bearing between the other two. These domain rearrangements provide a new structural paradigm that is consistent in detail with the "induced-fit" mechanism proposed for TyrRS by Fersht et al. (Fersht AR, Knill-Jones JW, Beduelle H, Winter G, 1988, Biochemistry 27:1581-1587). Coupling of ATP binding determinants associated with the two catalytic signature sequences to the helical domain containing the presumptive anticodon-binding site provides a mechanism to coordinate active-site chemistry with relocation of the major tRNA binding determinants.
Full Text
The Full Text of this article is available as a PDF (4.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldwin J., Chothia C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol. 1979 Apr 5;129(2):175–220. doi: 10.1016/0022-2836(79)90277-8. [DOI] [PubMed] [Google Scholar]
- Bedouelle H. Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase. Biochimie. 1990 Aug;72(8):589–598. doi: 10.1016/0300-9084(90)90122-w. [DOI] [PubMed] [Google Scholar]
- Bedouelle H., Winter G. A model of synthetase/transfer RNA interaction as deduced by protein engineering. 1986 Mar 27-Apr 2Nature. 320(6060):371–373. doi: 10.1038/320371a0. [DOI] [PubMed] [Google Scholar]
- Brick P., Bhat T. N., Blow D. M. Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol. 1989 Jul 5;208(1):83–98. doi: 10.1016/0022-2836(89)90090-9. [DOI] [PubMed] [Google Scholar]
- Brünger A. T. Crystallographic refinement by simulated annealing. Application to a 2.8 A resolution structure of aspartate aminotransferase. J Mol Biol. 1988 Oct 5;203(3):803–816. doi: 10.1016/0022-2836(88)90211-2. [DOI] [PubMed] [Google Scholar]
- Burbaum J. J., Schimmel P. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence. Protein Sci. 1992 May;1(5):575–581. doi: 10.1002/pro.5560010503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burbaum J. J., Starzyk R. M., Schimmel P. Understanding structural relationships in proteins of unsolved three-dimensional structure. Proteins. 1990;7(2):99–111. doi: 10.1002/prot.340070202. [DOI] [PubMed] [Google Scholar]
- Carter C. W., Jr, Carter C. W. Protein crystallization using incomplete factorial experiments. J Biol Chem. 1979 Dec 10;254(23):12219–12223. [PubMed] [Google Scholar]
- Carter C. W., Jr Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem. 1993;62:715–748. doi: 10.1146/annurev.bi.62.070193.003435. [DOI] [PubMed] [Google Scholar]
- Carter C. W., Jr, Crumley K. V., Coleman D. E., Hage F., Bricogne G. Direct phase determination for the molecular envelope of tryptophanyl-tRNA synthetase from Bacillus stearothermophilus by X-ray contrast variation. Acta Crystallogr A. 1990 Jan 1;46(Pt 1):57–68. doi: 10.1107/s0108767389009682. [DOI] [PubMed] [Google Scholar]
- Carter C. W., Jr, Doublié S., Coleman D. E. Quantitative analysis of crystal growth. Tryptophanyl-tRNA synthetase crystal polymorphism and its relationship to catalysis. J Mol Biol. 1994 May 6;238(3):346–365. doi: 10.1006/jmbi.1994.1297. [DOI] [PubMed] [Google Scholar]
- Carter C. W., Jr, Yin Y. Quantitative analysis in the characterization and optimization of protein crystal growth. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):572–590. doi: 10.1107/S0907444994001228. [DOI] [PubMed] [Google Scholar]
- Carter P., Bedouelle H., Winter G. Construction of heterodimer tyrosyl-tRNA synthetase shows tRNATyr interacts with both subunits. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1189–1192. doi: 10.1073/pnas.83.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doublié S., Bricogne G., Gilmore C., Carter C. W., Jr Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. Structure. 1995 Jan 15;3(1):17–31. doi: 10.1016/s0969-2126(01)00132-0. [DOI] [PubMed] [Google Scholar]
- Doublié S., Xiang S., Gilmore C. J., Bricogne G., Carter C. W., Jr Overcoming non-isomorphism by phase permutation and likelihood scoring: solution of the TrpRS crystal structure. Acta Crystallogr A. 1994 Mar 1;50(Pt 2):164–182. doi: 10.1107/s0108767393010037. [DOI] [PubMed] [Google Scholar]
- Fersht A. R. Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis. Biochemistry. 1987 Dec 15;26(25):8031–8037. doi: 10.1021/bi00399a001. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Knill-Jones J. W., Bedouelle H., Winter G. Reconstruction by site-directed mutagenesis of the transition state for the activation of tyrosine by the tyrosyl-tRNA synthetase: a mobile loop envelopes the transition state in an induced-fit mechanism. Biochemistry. 1988 Mar 8;27(5):1581–1587. doi: 10.1021/bi00405a028. [DOI] [PubMed] [Google Scholar]
- Hogue C. W., Doublié S., Xue H., Wong J. T., Carter C. W., Jr, Szabo A. G. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92. J Mol Biol. 1996 Jul 19;260(3):446–466. doi: 10.1006/jmbi.1996.0413. [DOI] [PubMed] [Google Scholar]
- Hountondji C., Dessen P., Blanquet S. Sequence similarities among the family of aminoacyl-tRNA synthetases. Biochimie. 1986 Sep;68(9):1071–1078. doi: 10.1016/s0300-9084(86)80181-x. [DOI] [PubMed] [Google Scholar]
- Ilyin V. A. Non-polar nuclei in fungal microbial RNases. Protein Eng. 1994 Oct;7(10):1189–1195. doi: 10.1093/protein/7.10.1189. [DOI] [PubMed] [Google Scholar]
- Jahn M., Rogers M. J., Söll D. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature. 1991 Jul 18;352(6332):258–260. doi: 10.1038/352258a0. [DOI] [PubMed] [Google Scholar]
- Kleywegt G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):842–857. doi: 10.1107/S0907444995016477. [DOI] [PubMed] [Google Scholar]
- Labouze E., Bedouelle H. Structural and kinetic bases for the recognition of tRNATyr by tyrosyl-tRNA synthetase. J Mol Biol. 1989 Feb 20;205(4):729–735. doi: 10.1016/0022-2836(89)90317-3. [DOI] [PubMed] [Google Scholar]
- Rice L. M., Brünger A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins. 1994 Aug;19(4):277–290. doi: 10.1002/prot.340190403. [DOI] [PubMed] [Google Scholar]
- Schulman L. H., Pelka H. Anticodon switching changes the identity of methionine and valine transfer RNAs. Science. 1988 Nov 4;242(4879):765–768. doi: 10.1126/science.3055296. [DOI] [PubMed] [Google Scholar]
- Schulman L. H., Pelka H. The anticodon contains a major element of the identity of arginine transfer RNAs. Science. 1989 Dec 22;246(4937):1595–1597. doi: 10.1126/science.2688091. [DOI] [PubMed] [Google Scholar]
- Senger B., Despons L., Walter P., Fasiolo F. The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10768–10771. doi: 10.1073/pnas.89.22.10768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward W. H., Fersht A. R. Asymmetry of tyrosyl-tRNA synthetase in solution. Biochemistry. 1988 Feb 9;27(3):1041–1049. doi: 10.1021/bi00403a029. [DOI] [PubMed] [Google Scholar]
- Ward W. H., Fersht A. R. Tyrosyl-tRNA synthetase acts as an asymmetric dimer in charging tRNA. A rationale for half-of-the-sites activity. Biochemistry. 1988 Jul 26;27(15):5525–5530. doi: 10.1021/bi00415a021. [DOI] [PubMed] [Google Scholar]
- Webster T., Tsai H., Kula M., Mackie G. A., Schimmel P. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Science. 1984 Dec 14;226(4680):1315–1317. doi: 10.1126/science.6390679. [DOI] [PubMed] [Google Scholar]
- Xiang S., Carter C. W., Jr, Bricogne G., Gilmore C. J. Entropy maximization constrained by solvent flatness: a new method for macromolecular phase extension and map improvement. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):193–212. doi: 10.1107/S0907444992008540. [DOI] [PubMed] [Google Scholar]
- Xue H., Xue Y., Doublié S., Carter C. W., Jr Chemical modifications of Bacillus subtilis tryptophanyl-tRNA synthetase. Biochem Cell Biol. 1997;75(6):709–715. doi: 10.1139/o97-054. [DOI] [PubMed] [Google Scholar]
- Yesland K. D., Johnson J. D. Anticodon bases C34 and C35 are major, positive, identity elements in Saccharomyces cerevisiae tRNA(Trp). Nucleic Acids Res. 1993 Nov 11;21(22):5079–5084. doi: 10.1093/nar/21.22.5079. [DOI] [PMC free article] [PubMed] [Google Scholar]
