Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Feb;9(2):403–416. doi: 10.1110/ps.9.2.403

A new approach to the design of uniquely folded thermally stable proteins.

X Jiang 1, H Farid 1, E Pistor 1, R S Farid 1
PMCID: PMC2144549  PMID: 10716193

Abstract

A new computer program (CORE) is described that predicts core hydrophobic sequences of predetermined target protein structures. A novel scoring function is employed, which for the first time incorporates parameters directly correlated to free energies of unfolding (deltaGu), melting temperatures (Tm), and cooperativity. Metropolis-driven simulated annealing and low-temperature Monte Carlo sampling are used to optimize this score, generating sequences predicted to yield uniquely folded, stable proteins with cooperative unfolding transitions. The hydrophobic core residues of four natural proteins were predicted using CORE with the backbone structure and solvent exposed residues as input. In the two smaller proteins tested (Gbeta1, 11 core amino acids; 434 cro, 10 core amino acids), the native sequence was regenerated as well as the sequence of known thermally stable variants that exhibit cooperative denaturation transitions. Previously designed sequences of variants with lower thermal stability and weaker cooperativity were not predicted. In the two larger proteins tested (myoglobin, 32 core amino acids; methionine aminopeptidase, 63 core amino acids), sequences with corresponding side-chain conformations remarkably similar to that of native were predicted.

Full Text

The Full Text of this article is available as a PDF (350.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander P., Fahnestock S., Lee T., Orban J., Bryan P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry. 1992 Apr 14;31(14):3597–3603. doi: 10.1021/bi00129a007. [DOI] [PubMed] [Google Scholar]
  2. Dahiyat B. I., Mayo S. L. De novo protein design: fully automated sequence selection. Science. 1997 Oct 3;278(5335):82–87. doi: 10.1126/science.278.5335.82. [DOI] [PubMed] [Google Scholar]
  3. Dahiyat B. I., Mayo S. L. Probing the role of packing specificity in protein design. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10172–10177. doi: 10.1073/pnas.94.19.10172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dahiyat B. I., Mayo S. L. Protein design automation. Protein Sci. 1996 May;5(5):895–903. doi: 10.1002/pro.5560050511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeGrado W. F., Wasserman Z. R., Lear J. D. Protein design, a minimalist approach. Science. 1989 Feb 3;243(4891):622–628. doi: 10.1126/science.2464850. [DOI] [PubMed] [Google Scholar]
  6. Desjarlais J. R., Handel T. M. De novo design of the hydrophobic cores of proteins. Protein Sci. 1995 Oct;4(10):2006–2018. doi: 10.1002/pro.5560041006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doig A. J., Sternberg M. J. Side-chain conformational entropy in protein folding. Protein Sci. 1995 Nov;4(11):2247–2251. doi: 10.1002/pro.5560041101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dunitz J. D. Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chem Biol. 1995 Nov;2(11):709–712. doi: 10.1016/1074-5521(95)90097-7. [DOI] [PubMed] [Google Scholar]
  9. Freire E., Murphy K. P. Molecular basis of co-operativity in protein folding. J Mol Biol. 1991 Dec 5;222(3):687–698. doi: 10.1016/0022-2836(91)90505-z. [DOI] [PubMed] [Google Scholar]
  10. Harbury P. B., Plecs J. J., Tidor B., Alber T., Kim P. S. High-resolution protein design with backbone freedom. Science. 1998 Nov 20;282(5393):1462–1467. doi: 10.1126/science.282.5393.1462. [DOI] [PubMed] [Google Scholar]
  11. Hawkes R., Grutter M. G., Schellman J. Thermodynamic stability and point mutations of bacteriophage T4 lysozyme. J Mol Biol. 1984 May 15;175(2):195–212. doi: 10.1016/0022-2836(84)90474-1. [DOI] [PubMed] [Google Scholar]
  12. Hellinga H. W., Richards F. M. Optimal sequence selection in proteins of known structure by simulated evolution. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5803–5807. doi: 10.1073/pnas.91.13.5803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holm L., Sander C. Database algorithm for generating protein backbone and side-chain co-ordinates from a C alpha trace application to model building and detection of co-ordinate errors. J Mol Biol. 1991 Mar 5;218(1):183–194. doi: 10.1016/0022-2836(91)90883-8. [DOI] [PubMed] [Google Scholar]
  14. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  15. Kamtekar S., Schiffer J. M., Xiong H., Babik J. M., Hecht M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science. 1993 Dec 10;262(5140):1680–1685. doi: 10.1126/science.8259512. [DOI] [PubMed] [Google Scholar]
  16. Kono H., Nishiyama M., Tanokura M., Doi J. Designing the hydrophobic core of Thermus flavus malate dehydrogenase based on side-chain packing. Protein Eng. 1998 Jan;11(1):47–52. doi: 10.1093/protein/11.1.47. [DOI] [PubMed] [Google Scholar]
  17. Lee C., Levitt M. Accurate prediction of the stability and activity effects of site-directed mutagenesis on a protein core. Nature. 1991 Aug 1;352(6334):448–451. doi: 10.1038/352448a0. [DOI] [PubMed] [Google Scholar]
  18. Lumry R., Rajender S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers. 1970;9(10):1125–1227. doi: 10.1002/bip.1970.360091002. [DOI] [PubMed] [Google Scholar]
  19. Murphy K. P., Bhakuni V., Xie D., Freire E. Molecular basis of co-operativity in protein folding. III. Structural identification of cooperative folding units and folding intermediates. J Mol Biol. 1992 Sep 5;227(1):293–306. doi: 10.1016/0022-2836(92)90699-k. [DOI] [PubMed] [Google Scholar]
  20. Murphy K. P., Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43:313–361. doi: 10.1016/s0065-3233(08)60556-2. [DOI] [PubMed] [Google Scholar]
  21. Murphy K. P., Gill S. J. Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol. 1991 Dec 5;222(3):699–709. doi: 10.1016/0022-2836(91)90506-2. [DOI] [PubMed] [Google Scholar]
  22. Murphy K. P., Privalov P. L., Gill S. J. Common features of protein unfolding and dissolution of hydrophobic compounds. Science. 1990 Feb 2;247(4942):559–561. doi: 10.1126/science.2300815. [DOI] [PubMed] [Google Scholar]
  23. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  24. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  25. Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
  26. Privalov P. L., Makhatadze G. I. Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol. 1990 May 20;213(2):385–391. doi: 10.1016/S0022-2836(05)80198-6. [DOI] [PubMed] [Google Scholar]
  27. Shenkin P. S., Farid H., Fetrow J. S. Prediction and evaluation of side-chain conformations for protein backbone structures. Proteins. 1996 Nov;26(3):323–352. doi: 10.1002/(SICI)1097-0134(199611)26:3<323::AID-PROT8>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  28. Shortle D., Meeker A. K., Freire E. Stability mutants of staphylococcal nuclease: large compensating enthalpy-entropy changes for the reversible denaturation reaction. Biochemistry. 1988 Jun 28;27(13):4761–4768. doi: 10.1021/bi00413a027. [DOI] [PubMed] [Google Scholar]
  29. Street A. G., Mayo S. L. Computational protein design. Structure. 1999 May;7(5):R105–R109. doi: 10.1016/s0969-2126(99)80062-8. [DOI] [PubMed] [Google Scholar]
  30. Su A., Mayo S. L. Coupling backbone flexibility and amino acid sequence selection in protein design. Protein Sci. 1997 Aug;6(8):1701–1707. doi: 10.1002/pro.5560060810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tuchscherer G., Scheibler L., Dumy P., Mutter M. Protein design: on the threshold of functional properties. Biopolymers. 1998;47(1):63–73. doi: 10.1002/(SICI)1097-0282(1998)47:1<63::AID-BIP7>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  32. Williams M. A., Goodfellow J. M., Thornton J. M. Buried waters and internal cavities in monomeric proteins. Protein Sci. 1994 Aug;3(8):1224–1235. doi: 10.1002/pro.5560030808. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES