Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Feb;9(2):213–217. doi: 10.1110/ps.9.2.213

A novel method of affinity-purifying proteins using a bis-arsenical fluorescein.

K S Thorn 1, N Naber 1, M Matuska 1, R D Vale 1, R Cooke 1
PMCID: PMC2144555  PMID: 10716173

Abstract

Genetically-encoded affinity tags constitute an important strategy for purifying proteins. Here, we have designed a novel affinity matrix based on the his-arsenical fluorescein dye FlAsH, which specifically recognizes short alpha-helical peptides containing the sequence CCXXCC (Griffin BA, Adams SR, Tsien RY, 1998, Science 281:269-272). We find that kinesin tagged with this cysteine-containing helix binds specifically to FlAsH resin and can be eluted in a fully active form. This affinity tag has several advantages over polyhistidine, the only small affinity tag in common use. The protein obtained with this single chromatographic step from crude Escherichia coli lysates is purer than that obtained with nickel affinity chromatography of 6xHis tagged kinesin. Moreover, unlike nickel affinity chromatography, which requires high concentrations of imidazole or pH changes for elution, protein bound to the FlAsH column can be completely eluted by dithiothreitol. Because of these mild elution conditions, FlAsH affinity chromatography is ideal for recovering fully active protein and for the purification of intact protein complexes.

Full Text

The Full Text of this article is available as a PDF (154.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Case R. B., Pierce D. W., Hom-Booher N., Hart C. L., Vale R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell. 1997 Sep 5;90(5):959–966. doi: 10.1016/s0092-8674(00)80360-8. [DOI] [PubMed] [Google Scholar]
  2. Griffin B. A., Adams S. R., Tsien R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science. 1998 Jul 10;281(5374):269–272. doi: 10.1126/science.281.5374.269. [DOI] [PubMed] [Google Scholar]
  3. Hannig G., Makrides S. C. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 1998 Feb;16(2):54–60. doi: 10.1016/s0167-7799(97)01155-4. [DOI] [PubMed] [Google Scholar]
  4. KARUSH F., KLINMAN N. R., MARKS R. AN ASSAY METHOD FOR DISULFIDE GROUPS BY FLUORESCENCE QUENCHING. Anal Biochem. 1964 Sep;9:100–114. doi: 10.1016/0003-2697(64)90088-0. [DOI] [PubMed] [Google Scholar]
  5. LaVallie E. R., McCoy J. M. Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol. 1995 Oct;6(5):501–506. doi: 10.1016/0958-1669(95)80083-2. [DOI] [PubMed] [Google Scholar]
  6. Makrides S. C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 1996 Sep;60(3):512–538. doi: 10.1128/mr.60.3.512-538.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nilsson J., Ståhl S., Lundeberg J., Uhlén M., Nygren P. A. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif. 1997 Oct;11(1):1–16. doi: 10.1006/prep.1997.0767. [DOI] [PubMed] [Google Scholar]
  8. Shipchandler M. T., Fino J. R. A revised structure of fluorescein mercuric acetate. Anal Biochem. 1986 May 1;154(2):476–477. doi: 10.1016/0003-2697(86)90017-5. [DOI] [PubMed] [Google Scholar]
  9. Uhlén M., Moks T. Gene fusions for purpose of expression: an introduction. Methods Enzymol. 1990;185:129–143. doi: 10.1016/0076-6879(90)85014-f. [DOI] [PubMed] [Google Scholar]
  10. Woehlke G., Ruby A. K., Hart C. L., Ly B., Hom-Booher N., Vale R. D. Microtubule interaction site of the kinesin motor. Cell. 1997 Jul 25;90(2):207–216. doi: 10.1016/s0092-8674(00)80329-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES