Abstract
Pigeon liver malic enzyme was inactivated and cleaved at Asp141, Asp194, and Asp464 by the Cu2+-ascorbate system in acidic environment. Site-specific mutagenesis was performed at these putative metal-binding sites. Three point mutants, D141N, D194N, and D464N; three double mutants, D(141,194)N, D(194,464)N, and D(141,464)N; and a triple mutant, D(141,194,464)N; as well as the wild-type malic enzyme (WT) were successfully cloned and expressed in Escherichia coli cells. All recombinant enzymes, except the triple mutant, were purified to apparent homogeneity by successive Q-Sepharose and adenosine-2',5'-bisphosphate-agarose columns. The mutants showed similar apparent Km,NADP values to that of the WT. The Km,Mal value was increased in the D141N and D194N mutants. The Km,Mn value, on the other hand, was increased only in the D141N mutant by 14-fold, corresponding to approximately 1.6 kcal/mol for the Asp141-Mn2+ binding energy. Substrate inhibition by L-malate was only observed in WT, D464N, and D(141,464)N. Initial velocity experiments were performed to derive the various kinetic parameters. The possible interactions between Asp141, Asp194, and Asp464 were analyzed by the double-mutation cycles and triple-mutation box. There are synergistic weakening interactions between Asp141 and Asp194 in the metal binding that impel the D(141,194)N double mutant to an overall specificity constant [k(cat)/(Kd,Mn Km,Mal Km,NADP)] at least four orders of magnitude smaller than the WT value. This difference corresponds to an increase of 6.38 kcal/mol energy barrier for the catalytic efficiency. Mutation at Asp464, on the other hand, has partial additivity on the mutations at Asp141 and Asp194. The overall specificity constants for the double mutants D(194,464)N and D(141,464)N or the triple mutant D(141,194,464)N were decreased by only 10- to 100-fold compared to the WT. These results strongly suggest the involvement of Asp141 in the Mn2+-L-malate binding for the pigeon liver malic enzyme. The Asp194 and Asp464, which may be oxidized by nonspecific binding of Cu2+, are involved in the Mn2+-L-malate binding or catalysis indirectly by modulating the binding affinity of Asp141 with the Mn2+.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berlett B. S., Stadtman E. R. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997 Aug 15;272(33):20313–20316. doi: 10.1074/jbc.272.33.20313. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Cao W., Barany F. Identification of TaqI endonuclease active site residues by Fe2+-mediated oxidative cleavage. J Biol Chem. 1998 Dec 4;273(49):33002–33010. doi: 10.1074/jbc.273.49.33002. [DOI] [PubMed] [Google Scholar]
- Carter P. J., Winter G., Wilkinson A. J., Fersht A. R. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell. 1984 Oct;38(3):835–840. doi: 10.1016/0092-8674(84)90278-2. [DOI] [PubMed] [Google Scholar]
- Chang G. G., Huang T. M., Huang S. M., Chou W. Y. Dissociation of pigeon-liver malic enzyme in reverse micelles. Eur J Biochem. 1994 Nov 1;225(3):1021–1027. doi: 10.1111/j.1432-1033.1994.1021b.x. [DOI] [PubMed] [Google Scholar]
- Chang G. G., Huang T. M., Wang J. K., Lee H. J., Chou W. Y., Meng C. L. Kinetic mechanism of the cytosolic malic enzyme from human breast cancer cell line. Arch Biochem Biophys. 1992 Aug 1;296(2):468–473. doi: 10.1016/0003-9861(92)90599-r. [DOI] [PubMed] [Google Scholar]
- Chang G. G., Wang J. K., Huang T. M., Lee H. J., Chou W. Y., Meng C. L. Purification and characterization of the cytosolic NADP(+)-dependent malic enzyme from human breast cancer cell line. Eur J Biochem. 1991 Dec 5;202(2):681–688. doi: 10.1111/j.1432-1033.1991.tb16423.x. [DOI] [PubMed] [Google Scholar]
- Chang J. T., Chang G. G. Purification of pigeon liver malic enzyme by affinity chromatography. Anal Biochem. 1982 Apr;121(2):366–369. doi: 10.1016/0003-2697(82)90494-8. [DOI] [PubMed] [Google Scholar]
- Chou W. Y., Huang S. M., Chang G. G. Conformational stability of the N-terminal amino acid residues of mutated recombinant pigeon liver malic enzymes. Protein Eng. 1998 May;11(5):371–376. doi: 10.1093/protein/11.5.371. [DOI] [PubMed] [Google Scholar]
- Chou W. Y., Huang S. M., Chang G. G. Functional roles of the N-terminal amino acid residues in the Mn(II)-L-malate binding and subunit interactions of pigeon liver malic enzyme. Protein Eng. 1997 Oct;10(10):1205–1211. doi: 10.1093/protein/10.10.1205. [DOI] [PubMed] [Google Scholar]
- Chou W. Y., Huang S. M., Chang G. G. Nonidentity of the cDNA sequence of human breast cancer cell malic enzyme to that from the normal human cell. J Protein Chem. 1996 Apr;15(3):273–279. doi: 10.1007/BF01887116. [DOI] [PubMed] [Google Scholar]
- Chou W. Y., Liu M. Y., Huang S. M., Chang G. G. Involvement of Phe19 in the Mn(2+)-L-malate binding and the subunit interactions of pigeon liver malic enzyme. Biochemistry. 1996 Jul 30;35(30):9873–9879. doi: 10.1021/bi960200g. [DOI] [PubMed] [Google Scholar]
- Chou W. Y., Tsai W. P., Lin C. C., Chang G. G. Selective oxidative modification and affinity cleavage of pigeon liver malic enzyme by the Cu(2+)-ascorbate system. J Biol Chem. 1995 Oct 27;270(43):25935–25941. doi: 10.1074/jbc.270.43.25935. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Matouschek A., Serrano L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol. 1992 Apr 5;224(3):771–782. doi: 10.1016/0022-2836(92)90561-w. [DOI] [PubMed] [Google Scholar]
- Frenkel R. Regulation and physiological functions of malic enzymes. Curr Top Cell Regul. 1975;9:157–181. doi: 10.1016/b978-0-12-152809-6.50012-3. [DOI] [PubMed] [Google Scholar]
- Gallagher J., Zelenko O., Walts A. D., Sigman D. S. Protease activity of 1,10-phenanthroline-copper(I). Targeted scission of the catalytic site of carbonic anhydrase. Biochemistry. 1998 Feb 24;37(8):2096–2104. doi: 10.1021/bi971565j. [DOI] [PubMed] [Google Scholar]
- Goodridge A. G., Crish J. F., Hillgartner F. B., Wilson S. B. Nutritional and hormonal regulation of the gene for avian malic enzyme. J Nutr. 1989 Feb;119(2):299–308. doi: 10.1093/jn/119.2.299. [DOI] [PubMed] [Google Scholar]
- Hermes J. D., Roeske C. A., O'Leary M. H., Cleland W. W. Use of multiple isotope effects to determine enzyme mechanisms and intrinsic isotope effects. Malic enzyme and glucose-6-phosphate dehydrogenase. Biochemistry. 1982 Sep 28;21(20):5106–5114. doi: 10.1021/bi00263a040. [DOI] [PubMed] [Google Scholar]
- Higaki J. N., Fletterick R. J., Craik C. S. Engineered metalloregulation in enzymes. Trends Biochem Sci. 1992 Mar;17(3):100–104. doi: 10.1016/0968-0004(92)90245-5. [DOI] [PubMed] [Google Scholar]
- Hippeli S., Elstner E. F. Transition metal ion-catalyzed oxygen activation during pathogenic processes. FEBS Lett. 1999 Jan 22;443(1):1–7. doi: 10.1016/s0014-5793(98)01665-2. [DOI] [PubMed] [Google Scholar]
- Hlavaty J. J., Nowak T. Affinity cleavage at the metal-binding site of phosphoenolpyruvate carboxykinase. Biochemistry. 1997 Dec 9;36(49):15514–15525. doi: 10.1021/bi970574p. [DOI] [PubMed] [Google Scholar]
- Horovitz A., Fersht A. R. Co-operative interactions during protein folding. J Mol Biol. 1992 Apr 5;224(3):733–740. doi: 10.1016/0022-2836(92)90557-z. [DOI] [PubMed] [Google Scholar]
- Hsu R. Y., Lardy H. A., Cleland W. W. Pigeon liver malic enzyme. V. Kinetic studies. J Biol Chem. 1967 Nov 25;242(22):5315–5322. [PubMed] [Google Scholar]
- Hsu R. Y., Mildvan A. S., Chang G., Fung C. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+. J Biol Chem. 1976 Nov 10;251(21):6574–6583. [PubMed] [Google Scholar]
- Huang S. M., Chou W. Y., Lin S. I., Chang G. G. Engineering of a stable mutant malic enzyme by introducing an extra ion-pair to the protein. Proteins. 1998 Apr 1;31(1):61–73. doi: 10.1002/(sici)1097-0134(19980401)31:1<61::aid-prot6>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
- Jacobson M. D. Reactive oxygen species and programmed cell death. Trends Biochem Sci. 1996 Mar;21(3):83–86. [PubMed] [Google Scholar]
- Karsten W. E., Hwang C. C., Cook P. F. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme. Biochemistry. 1999 Apr 6;38(14):4398–4402. doi: 10.1021/bi982439y. [DOI] [PubMed] [Google Scholar]
- Klemba M., Gardner K. H., Marino S., Clarke N. D., Regan L. Novel metal-binding proteins by design. Nat Struct Biol. 1995 May;2(5):368–373. doi: 10.1038/nsb0595-368. [DOI] [PubMed] [Google Scholar]
- Kuliopulos A., Talalay P., Mildvan A. S. Combined effects of two mutations of catalytic residues on the ketosteroid isomerase reaction. Biochemistry. 1990 Nov 6;29(44):10271–10280. doi: 10.1021/bi00496a017. [DOI] [PubMed] [Google Scholar]
- Lu Y., Valentine J. S. Engineering metal-binding sites in proteins. Curr Opin Struct Biol. 1997 Aug;7(4):495–500. doi: 10.1016/s0959-440x(97)80112-1. [DOI] [PubMed] [Google Scholar]
- Mildvan A. S., Weber D. J., Kuliopulos A. Quantitative interpretations of double mutations of enzymes. Arch Biochem Biophys. 1992 May 1;294(2):327–340. doi: 10.1016/0003-9861(92)90692-p. [DOI] [PubMed] [Google Scholar]
- Perrella F. W. EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal Biochem. 1988 Nov 1;174(2):437–447. doi: 10.1016/0003-2697(88)90042-5. [DOI] [PubMed] [Google Scholar]
- RUTTER W. J., LARDY H. A. Purification and properties of pigeon liver malic enzyme. J Biol Chem. 1958 Aug;233(2):374–382. [PubMed] [Google Scholar]
- Regan L. The design of metal-binding sites in proteins. Annu Rev Biophys Biomol Struct. 1993;22:257–287. doi: 10.1146/annurev.bb.22.060193.001353. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stohs S. J., Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995 Feb;18(2):321–336. doi: 10.1016/0891-5849(94)00159-h. [DOI] [PubMed] [Google Scholar]
- Urbauer J. L., Bradshaw D. E., Cleland W. W. Determination of the kinetic and chemical mechanism of malic enzyme using (2R,3R)-erythro-fluoromalate as a slow alternate substrate. Biochemistry. 1998 Dec 22;37(51):18026–18031. doi: 10.1021/bi981820f. [DOI] [PubMed] [Google Scholar]
- Wei C. H., Chou W. Y., Chang G. G. Identification of Asp258 as the metal coordinate of pigeon liver malic enzyme by site-specific mutagenesis. Biochemistry. 1995 Jun 20;34(24):7949–7954. doi: 10.1021/bi00024a020. [DOI] [PubMed] [Google Scholar]
- Wei C. H., Chou W. Y., Huang S. M., Lin C. C., Chang G. G. Affinity cleavage at the putative metal-binding site of pigeon liver malic enzyme by the Fe(2+)-ascorbate system. Biochemistry. 1994 Jun 28;33(25):7931–7936. doi: 10.1021/bi00191a021. [DOI] [PubMed] [Google Scholar]
- Xu Y, Bhargava G, Wu H, Loeber G, Tong L. Crystal structure of human mitochondrial NAD(P)(+)-dependent malic enzyme: a new class of oxidative decarboxylases. Structure. 1999;7(8):877–889. [PubMed] [Google Scholar]
- Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res. 1982 Oct 25;10(20):6487–6500. doi: 10.1093/nar/10.20.6487. [DOI] [PMC free article] [PubMed] [Google Scholar]