Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Feb;9(2):280–289. doi: 10.1110/ps.9.2.280

An interdomain distance in cardiac troponin C determined by fluorescence spectroscopy.

W J Dong 1, J M Robinson 1, J Xing 1, P K Umeda 1, H C Cheung 1
PMCID: PMC2144559  PMID: 10716180

Abstract

The distance between Ca2+-binding site III in the C-terminal domain and Cys35 in the N-terminal domain in cardiac muscle troponin C (cTnC) was determined with a single-tryptophan mutant using bound Tb3+ as the energy donor and iodoacetamidotetramethylrhodamine linked to the cysteine residue as energy acceptor. The luminescence of bound Tb3+ was generated through sensitization by the tryptophan located in the 12-residue binding loop of site III upon irradiation at 295 nm, and this sensitized luminescence was the donor signal transferred to the acceptor. In the absence of bound cation at site II, the mean interdomain distance was found to be 48-49 A regardless of whether the cTnC was unbound or bound to cardiac troponin I, or reconstituted into cardiac troponin. These results suggest that cTnC retains its overall length in the presence of bound target proteins. The distribution of the distances was wide (half-width >9 A) and suggests considerable interdomain flexibility in isolated cTnC, but the distributions became narrower for cTnC in the complexes with the other subunits. In the presence of bound cation at the regulatory site II, the interdomain distance was shortened by 6 A for cTnC, but without an effect on the half-width. The decrease in the mean distance was much smaller or negligible when cTnC was complexed with cTnI or cTnI and cTnT under the same conditions. Although free cTnC has considerable interdomain flexibility, this dynamics is slightly reduced in troponin. These results indicate that the transition from the relaxed state to an activated state in cardiac muscle is not accompanied by a gross alteration of the cTnC conformation in cardiac troponin.

Full Text

The Full Text of this article is available as a PDF (808.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chabbert M., Lukas T. J., Watterson D. M., Axelsen P. H., Prendergast F. G. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II. Biochemistry. 1991 Jul 30;30(30):7615–7630. doi: 10.1021/bi00244a034. [DOI] [PubMed] [Google Scholar]
  2. Dong W. J., Chandra M., Xing J., She M., Solaro R. J., Cheung H. C. Phosphorylation-induced distance change in a cardiac muscle troponin I mutant. Biochemistry. 1997 Jun 3;36(22):6754–6761. doi: 10.1021/bi9622276. [DOI] [PubMed] [Google Scholar]
  3. Dong W. J., Chandra M., Xing J., Solaro R. J., Cheung H. C. Conformation of the N-terminal segment of a monocysteine mutant of troponin I from cardiac muscle. Biochemistry. 1997 Jun 3;36(22):6745–6753. doi: 10.1021/bi962226d. [DOI] [PubMed] [Google Scholar]
  4. Dong W. J., Wang C. K., Gordon A. M., Cheung H. C. Disparate fluorescence properties of 2-[4'-(iodoacetamido)anilino]-naphthalene-6-sulfonic acid attached to Cys-84 and Cys-35 of troponin C in cardiac muscle troponin. Biophys J. 1997 Feb;72(2 Pt 1):850–857. doi: 10.1016/s0006-3495(97)78719-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dong W. J., Xing J., Villain M., Hellinger M., Robinson J. M., Chandra M., Solaro R. J., Umeda P. K., Cheung H. C. Conformation of the regulatory domain of cardiac muscle troponin C in its complex with cardiac troponin I. J Biol Chem. 1999 Oct 29;274(44):31382–31390. doi: 10.1074/jbc.274.44.31382. [DOI] [PubMed] [Google Scholar]
  6. Dong W., Rosenfeld S. S., Wang C. K., Gordon A. M., Cheung H. C. Kinetic studies of calcium binding to the regulatory site of troponin C from cardiac muscle. J Biol Chem. 1996 Jan 12;271(2):688–694. doi: 10.1074/jbc.271.2.688. [DOI] [PubMed] [Google Scholar]
  7. Farah C. S., Miyamoto C. A., Ramos C. H., da Silva A. C., Quaggio R. B., Fujimori K., Smillie L. B., Reinach F. C. Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem. 1994 Feb 18;269(7):5230–5240. [PubMed] [Google Scholar]
  8. Flicker P. F., Phillips G. N., Jr, Cohen C. Troponin and its interactions with tropomyosin. An electron microscope study. J Mol Biol. 1982 Dec 5;162(2):495–501. doi: 10.1016/0022-2836(82)90540-x. [DOI] [PubMed] [Google Scholar]
  9. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  10. Kanellis P., Yang J., Cheung H. C., Lenkinski R. E. Synthetic peptide analogs of skeletal troponin C: fluorescence studies of analogs of the low-affinity calcium-binding site II. Arch Biochem Biophys. 1983 Feb 1;220(2):530–540. doi: 10.1016/0003-9861(83)90444-7. [DOI] [PubMed] [Google Scholar]
  11. Kleerekoper Q., Howarth J. W., Guo X., Solaro R. J., Rosevear P. R. Cardiac troponin I induced conformational changes in cardiac troponin C as monitored by NMR using site-directed spin and isotope labeling. Biochemistry. 1995 Oct 17;34(41):13343–13352. doi: 10.1021/bi00041a010. [DOI] [PubMed] [Google Scholar]
  12. Lakowicz J. R., Gryczynski I., Cheung H. C., Wang C. K., Johnson M. L., Joshi N. Distance distributions in proteins recovered by using frequency-domain fluorometry. Applications to troponin I and its complex with troponin C. Biochemistry. 1988 Dec 27;27(26):9149–9160. doi: 10.1021/bi00426a012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leavis P. C., Nagy B., Lehrer S. S., Bialkowska H., Gergely J. Terbium binding to troponin C: binding stoichiometry and structural changes induced in the protein. Arch Biochem Biophys. 1980 Mar;200(1):17–21. doi: 10.1016/0003-9861(80)90324-0. [DOI] [PubMed] [Google Scholar]
  14. MacManus J. P., Hogue C. W., Marsden B. J., Sikorska M., Szabo A. G. Terbium luminescence in synthetic peptide loops from calcium-binding proteins with different energy donors. J Biol Chem. 1990 Jun 25;265(18):10358–10366. [PubMed] [Google Scholar]
  15. Malik N. A., Anantharamaiah G. M., Gawish A., Cheung H. C. Structural and biological studies on synthetic peptide analogues of a low-affinity calcium-binding site of skeletal troponin C. Biochim Biophys Acta. 1987 Jan 30;911(2):221–230. doi: 10.1016/0167-4838(87)90011-2. [DOI] [PubMed] [Google Scholar]
  16. Moncrieffe M. C., Eaton S., Bajzer Z., Haydock C., Potter J. D., Laue T. M., Prendergast F. G. Rotational and translational motion of troponin C. J Biol Chem. 1999 Jun 18;274(25):17464–17470. doi: 10.1074/jbc.274.25.17464. [DOI] [PubMed] [Google Scholar]
  17. Ngai S. M., Hodges R. S. Biologically important interactions between synthetic peptides of the N-terminal region of troponin I and troponin C. J Biol Chem. 1992 Aug 5;267(22):15715–15720. [PubMed] [Google Scholar]
  18. Olah G. A., Rokop S. E., Wang C. L., Blechner S. L., Trewhella J. Troponin I encompasses an extended troponin C in the Ca(2+)-bound complex: a small-angle X-ray and neutron scattering study. Biochemistry. 1994 Jul 12;33(27):8233–8239. doi: 10.1021/bi00193a009. [DOI] [PubMed] [Google Scholar]
  19. Olah G. A., Trewhella J. A model structure of the muscle protein complex 4Ca2+.troponin C.troponin I derived from small-angle scattering data: implications for regulation. Biochemistry. 1994 Nov 1;33(43):12800–12806. doi: 10.1021/bi00209a011. [DOI] [PubMed] [Google Scholar]
  20. She M., Xing J., Dong W. J., Umeda P. K., Cheung H. C. Calcium binding to the regulatory domain of skeletal muscle troponin C induces a highly constrained open conformation. J Mol Biol. 1998 Aug 21;281(3):445–452. doi: 10.1006/jmbi.1998.1933. [DOI] [PubMed] [Google Scholar]
  21. Sia S. K., Li M. X., Spyracopoulos L., Gagné S. M., Liu W., Putkey J. A., Sykes B. D. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J Biol Chem. 1997 Jul 18;272(29):18216–18221. doi: 10.1074/jbc.272.29.18216. [DOI] [PubMed] [Google Scholar]
  22. Stone D. B., Timmins P. A., Schneider D. K., Krylova I., Ramos C. H., Reinach F. C., Mendelson R. A. The effect of regulatory Ca2+ on the in situ structures of troponin C and troponin I: a neutron scattering study. J Mol Biol. 1998 Aug 28;281(4):689–704. doi: 10.1006/jmbi.1998.1965. [DOI] [PubMed] [Google Scholar]
  23. Sundaralingam M., Bergstrom R., Strasburg G., Rao S. T., Roychowdhury P., Greaser M., Wang B. C. Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science. 1985 Feb 22;227(4689):945–948. doi: 10.1126/science.3969570. [DOI] [PubMed] [Google Scholar]
  24. Swenson C. A., Fredricksen R. S. Interaction of troponin C and troponin C fragments with troponin I and the troponin I inhibitory peptide. Biochemistry. 1992 Apr 7;31(13):3420–3429. doi: 10.1021/bi00128a017. [DOI] [PubMed] [Google Scholar]
  25. Vassylyev D. G., Takeda S., Wakatsuki S., Maeda K., Maéda Y. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4847–4852. doi: 10.1073/pnas.95.9.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wang C. L., Leavis P. C. Distance measurements in cardiac troponin C. Arch Biochem Biophys. 1990 Jan;276(1):236–241. doi: 10.1016/0003-9861(90)90032-t. [DOI] [PubMed] [Google Scholar]
  27. Wang C. L., Leavis P. C., Horrocks W. D., Jr, Gergely J. Binding of lanthanide ions to troponin C. Biochemistry. 1981 Apr 28;20(9):2439–2444. doi: 10.1021/bi00512a012. [DOI] [PubMed] [Google Scholar]
  28. Wang C. L., Tao T., Gergely J. The distance between the high affinity sites of troponin-C measured by interlanthanide ion energy transfer. J Biol Chem. 1982 Jul 25;257(14):8372–8375. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES