Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Feb;165(2):564–569. doi: 10.1128/jb.165.2.564-569.1986

Streptococcal tetracycline resistance mediated at the level of protein synthesis.

V Burdett
PMCID: PMC214456  PMID: 3080409

Abstract

The mechanism of tetracycline resistance was examined in strains containing each of the three previously identified resistance determinants in Streptococcus spp. Uptake of tetracycline was measured in tetracycline-sensitive cells as well as in cells containing each of the three resistance determinants. In cells containing tetL, uptake was not observed. However, in sensitive cells and cells containing either tetM or tetN, tetracycline was accumulated approximately 25-fold against a concentration gradient. Furthermore, there was no evidence for modification of intracellular tetracycline recovered from sensitive, tetM, or tetN cells. Protein synthesis in extracts derived from organisms containing tetM or tetN was resistant to tetracycline. In contrast, extracts of sensitive and tetL cells were sensitive to tetracycline.

Full text

PDF
564

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asghar S. S., Levin E., Harold F. M. Accumulation of neutral amino acids by Streptococcus faecalis. Energy coupling by a proton-motive force. J Biol Chem. 1973 Aug 10;248(15):5225–5233. [PubMed] [Google Scholar]
  2. Burdett V. Identification of tetracycline-resistant R-plasmids in Streptococcus agalactiae (group B). Antimicrob Agents Chemother. 1980 Nov;18(5):753–760. doi: 10.1128/aac.18.5.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burdett V., Inamine J., Rajagopalan S. Heterogeneity of tetracycline resistance determinants in Streptococcus. J Bacteriol. 1982 Mar;149(3):995–1004. doi: 10.1128/jb.149.3.995-1004.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clewell D. B. Plasmids, drug resistance, and gene transfer in the genus Streptococcus. Microbiol Rev. 1981 Sep;45(3):409–436. doi: 10.1128/mr.45.3.409-436.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DEIBEL R. H. THE GROUP D STREPTOCOCCI. Bacteriol Rev. 1964 Sep;28:330–366. doi: 10.1128/br.28.3.330-366.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eccles S., Docherty A., Chopra I., Shales S., Ball P. Tetracycline resistance genes from Bacillus plasmid pAB124 confer decreased accumulation of the antibiotic in Bacillus subtilis but not in Escherichia coli. J Bacteriol. 1981 Mar;145(3):1417–1420. doi: 10.1128/jb.145.3.1417-1420.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fayolle F., Privitera G., Sebald M. Tetracycline transport in Bacteroides fragilis. Antimicrob Agents Chemother. 1980 Oct;18(4):502–505. doi: 10.1128/aac.18.4.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foster T. J., Walsh A. Phenotypic characterization of R-factor tetracycline resistance determinants. Genet Res. 1974 Dec;24(3):333–343. doi: 10.1017/s0016672300015330. [DOI] [PubMed] [Google Scholar]
  9. Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harold F. M., Papineau D. Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential. J Membr Biol. 1972;8(1):27–44. doi: 10.1007/BF01868093. [DOI] [PubMed] [Google Scholar]
  11. Harold F. M., Spitz E. Accumulation of arsenate, phosphate, and aspartate by Sreptococcus faecalis. J Bacteriol. 1975 Apr;122(1):266–277. doi: 10.1128/jb.122.1.266-277.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McMurry L., Petrucci R. E., Jr, Levy S. B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3974–3977. doi: 10.1073/pnas.77.7.3974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mikulík K., Jiránová A., Janda I., Weiser J. Susceptibility of ribosomes of the tetracycline-producing strain of Streptomyces aureofaciens to tetracyclines. FEBS Lett. 1983 Feb 7;152(1):125–130. doi: 10.1016/0014-5793(83)80496-7. [DOI] [PubMed] [Google Scholar]
  14. Miyamoto Y., Takizawa K., Matsushima A., Asai Y., Nakatsuka S. Stepwise acquisition of multiple drug resistance by beta-hemolytic streptococci and difference in resistance pattern by type. Antimicrob Agents Chemother. 1978 Mar;13(3):399–404. doi: 10.1128/aac.13.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Munske G. R., Lindley E. V., Magnuson J. A. Streptococcus faecalis proton gradients and tetracycline transport. J Bacteriol. 1984 Apr;158(1):49–54. doi: 10.1128/jb.158.1.49-54.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ohnuki T., Katoh T., Imanaka T., Aiba S. Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes. J Bacteriol. 1985 Mar;161(3):1010–1016. doi: 10.1128/jb.161.3.1010-1016.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Samra Z., Krausz-Steinmetz J., Sompolinsky D. Transport of tetracyclines through the bacterial cell membrane assayed by fluorescence: a study with susceptible and resistant strains of Staphylococcus aureus and Escherichia coli. Microbios. 1978;21(83):7–21. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES