Abstract
Effects of guanidine hydrochloride (GdnHCl) on the structure and dynamics of wild-type Humicola lanuginosa lipase (HLL) and its two mutants were studied. The latter were S146A (with the active site Ser replaced by Ala) and the single Trp mutant W89m, with substitutions W117F, W221H, and W260H. Steady-state, stopped-flow, and time-resolved laser-induced fluorescence spectroscopy were carried out as a function of [GdnHCl]. The maximum emission wavelength and fluorescence lifetimes revealed the microenvironment of the tryptophan(s) in these lipases to become more polar upon increasing [GdnHCl]. However, significant extent of tertiary structure in GdnHCl is suggested by the observation that both wild-type HLL and W89m remain catalytically active at rather high GdnHCl concentrations of >6 and 4.0 M, respectively. Changes in steady-state emission anisotropy, as well as variation in rotational correlation times and residual anisotropy values, demonstrate that upon increasing [GdnHCl] the structure of the lipases became more loose, with increasing amplitude of structural fluctuations. Finally, intermediate states in the course of exposure of the proteins to GdnHCl were revealed by stopped-flow fluorescence measurements.
Full Text
The Full Text of this article is available as a PDF (434.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barry J. K., Matthews K. S. Ligand-induced conformational changes in lactose repressor: a fluorescence study of single tryptophan mutants. Biochemistry. 1997 Dec 16;36(50):15632–15642. doi: 10.1021/bi971685r. [DOI] [PubMed] [Google Scholar]
- Berg O. G., Cajal Y., Butterfoss G. L., Grey R. L., Alsina M. A., Yu B. Z., Jain M. K. Interfacial activation of triglyceride lipase from Thermomyces (Humicola) lanuginosa: kinetic parameters and a basis for control of the lid. Biochemistry. 1998 May 12;37(19):6615–6627. doi: 10.1021/bi972998p. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brady L., Brzozowski A. M., Derewenda Z. S., Dodson E., Dodson G., Tolley S., Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature. 1990 Feb 22;343(6260):767–770. doi: 10.1038/343767a0. [DOI] [PubMed] [Google Scholar]
- Brzozowski A. M., Derewenda U., Derewenda Z. S., Dodson G. G., Lawson D. M., Turkenburg J. P., Bjorkling F., Huge-Jensen B., Patkar S. A., Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 1991 Jun 6;351(6326):491–494. doi: 10.1038/351491a0. [DOI] [PubMed] [Google Scholar]
- Burstein E. A., Vedenkina N. S., Ivkova M. N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973 Oct;18(4):263–279. doi: 10.1111/j.1751-1097.1973.tb06422.x. [DOI] [PubMed] [Google Scholar]
- Chen R. F., Knutson J. R., Ziffer H., Porter D. Fluorescence of tryptophan dipeptides: correlations with the rotamer model. Biochemistry. 1991 May 28;30(21):5184–5195. doi: 10.1021/bi00235a011. [DOI] [PubMed] [Google Scholar]
- Das T. K., Mazumdar S. pH-induced conformational perturbation in horseradish peroxidase. Picosecond tryptophan fluorescence studies on native and cyanide-modified enzymes. Eur J Biochem. 1995 Feb 1;227(3):823–828. doi: 10.1111/j.1432-1033.1995.tb20207.x. [DOI] [PubMed] [Google Scholar]
- Derewenda U., Swenson L., Green R., Wei Y., Dodson G. G., Yamaguchi S., Haas M. J., Derewenda Z. S. An unusual buried polar cluster in a family of fungal lipases. Nat Struct Biol. 1994 Jan;1(1):36–47. doi: 10.1038/nsb0194-36. [DOI] [PubMed] [Google Scholar]
- Derewenda U., Swenson L., Green R., Wei Y., Yamaguchi S., Joerger R., Haas M. J., Derewenda Z. S. Current progress in crystallographic studies of new lipases from filamentous fungi. Protein Eng. 1994 Apr;7(4):551–557. doi: 10.1093/protein/7.4.551. [DOI] [PubMed] [Google Scholar]
- Derewenda Z. S., Derewenda U., Dodson G. G. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. J Mol Biol. 1992 Oct 5;227(3):818–839. doi: 10.1016/0022-2836(92)90225-9. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Shortle D. Denatured states of proteins. Annu Rev Biochem. 1991;60:795–825. doi: 10.1146/annurev.bi.60.070191.004051. [DOI] [PubMed] [Google Scholar]
- Dougherty D. A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996 Jan 12;271(5246):163–168. doi: 10.1126/science.271.5246.163. [DOI] [PubMed] [Google Scholar]
- Gratton E., Jameson D. M., Hall R. D. Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng. 1984;13:105–124. doi: 10.1146/annurev.bb.13.060184.000541. [DOI] [PubMed] [Google Scholar]
- Hermoso J., Pignol D., Penel S., Roth M., Chapus C., Fontecilla-Camps J. C. Neutron crystallographic evidence of lipase-colipase complex activation by a micelle. EMBO J. 1997 Sep 15;16(18):5531–5536. doi: 10.1093/emboj/16.18.5531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmquist M., Clausen I. G., Patkar S., Svendsen A., Hult K. Probing a functional role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase through transesterification reactions in organic solvent. J Protein Chem. 1995 May;14(4):217–224. doi: 10.1007/BF01886762. [DOI] [PubMed] [Google Scholar]
- Holmquist M., Martinelle M., Clausen I. G., Patkar S., Svendsen A., Hult K. Trp89 in the lid of Humicola lanuginosa lipase is important for efficient hydrolysis of tributyrin. Lipids. 1994 Sep;29(9):599–603. doi: 10.1007/BF02536093. [DOI] [PubMed] [Google Scholar]
- Holmquist M., Norin M., Hult K. The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase. Lipids. 1993 Aug;28(8):721–726. doi: 10.1007/BF02535993. [DOI] [PubMed] [Google Scholar]
- Jamin M., Baldwin R. L. Two forms of the pH 4 folding intermediate of apomyoglobin. J Mol Biol. 1998 Feb 20;276(2):491–504. doi: 10.1006/jmbi.1997.1543. [DOI] [PubMed] [Google Scholar]
- Juszczak L. J., Zhang Z. Y., Wu L., Gottfried D. S., Eads D. D. Rapid loop dynamics of Yersinia protein tyrosine phosphatases. Biochemistry. 1997 Feb 25;36(8):2227–2236. doi: 10.1021/bi9622130. [DOI] [PubMed] [Google Scholar]
- Kungl A. J., Visser N. V., van Hoek A., Visser A. J., Billich A., Schilk A., Gstach H., Auer M. Time-resolved fluorescence anisotropy of HIV-1 protease inhibitor complexes correlates with inhibitory activity. Biochemistry. 1998 Mar 3;37(9):2778–2786. doi: 10.1021/bi971654w. [DOI] [PubMed] [Google Scholar]
- Lawson D. M., Brzozowski A. M., Rety S., Verma C., Dodson G. G. Probing the nature of substrate binding in Humicola lanuginosa lipase through X-ray crystallography and intuitive modelling. Protein Eng. 1994 Apr;7(4):543–550. doi: 10.1093/protein/7.4.543. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Timasheff S. N. Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry. 1974 Jan 15;13(2):257–265. doi: 10.1021/bi00699a005. [DOI] [PubMed] [Google Scholar]
- Martinelle M., Holmquist M., Clausen I. G., Patkar S., Svendsen A., Hult K. The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase. Protein Eng. 1996 Jun;9(6):519–524. doi: 10.1093/protein/9.6.519. [DOI] [PubMed] [Google Scholar]
- Martinelle M., Holmquist M., Hult K. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim Biophys Acta. 1995 Oct 5;1258(3):272–276. doi: 10.1016/0005-2760(95)00131-u. [DOI] [PubMed] [Google Scholar]
- Małecki J., Wasylewski Z. Stability and kinetics of unfolding and refolding of cAMP receptor protein from Escherichia coli. Eur J Biochem. 1997 Feb 1;243(3):660–669. doi: 10.1111/j.1432-1033.1997.00660.x. [DOI] [PubMed] [Google Scholar]
- Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otlewski J., Sywula A., Kolasinski M., Krowarsch D. Unfolding kinetics of bovine trypsinogen. Eur J Biochem. 1996 Dec 15;242(3):601–607. doi: 10.1111/j.1432-1033.1996.0601r.x. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Pace C. N. The stability of globular proteins. CRC Crit Rev Biochem. 1975 May;3(1):1–43. doi: 10.3109/10409237509102551. [DOI] [PubMed] [Google Scholar]
- Palleros D. R., Shi L., Reid K. L., Fink A. L. Three-state denaturation of DnaK induced by guanidine hydrochloride. Evidence for an expandable intermediate. Biochemistry. 1993 Apr 27;32(16):4314–4321. doi: 10.1021/bi00067a021. [DOI] [PubMed] [Google Scholar]
- Park S. H., O'Neil K. T., Roder H. An early intermediate in the folding reaction of the B1 domain of protein G contains a native-like core. Biochemistry. 1997 Nov 25;36(47):14277–14283. doi: 10.1021/bi971914+. [DOI] [PubMed] [Google Scholar]
- Peters G. H., Svendsen A., Langberg H., Vind J., Patkar S. A., Toxvaerd S., Kinnunen P. K. Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase. Biochemistry. 1998 Sep 8;37(36):12375–12383. doi: 10.1021/bi972883l. [DOI] [PubMed] [Google Scholar]
- Pinheiro T. J., Elöve G. A., Watts A., Roder H. Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles. Biochemistry. 1997 Oct 21;36(42):13122–13132. doi: 10.1021/bi971235z. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Intermediate states in protein folding. J Mol Biol. 1996 May 24;258(5):707–725. doi: 10.1006/jmbi.1996.0280. [DOI] [PubMed] [Google Scholar]
- Scalley M. L., Baker D. Protein folding kinetics exhibit an Arrhenius temperature dependence when corrected for the temperature dependence of protein stability. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10636–10640. doi: 10.1073/pnas.94.20.10636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- She M., Dong W. J., Umeda P. K., Cheung H. C. Tryptophan mutants of troponin C from skeletal muscle--an optical probe of the regulatory domain. Eur J Biochem. 1998 Mar 15;252(3):600–607. doi: 10.1046/j.1432-1327.1998.2520600.x. [DOI] [PubMed] [Google Scholar]
- Soulages J. L. Chemical denaturation: potential impact of undetected intermediates in the free energy of unfolding and m-values obtained from a two-state assumption. Biophys J. 1998 Jul;75(1):484–492. doi: 10.1016/S0006-3495(98)77537-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steer B. A., Merrill A. R. Characterization of an unfolding intermediate and kinetic analysis of guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide. Biochemistry. 1997 Mar 11;36(10):3037–3046. doi: 10.1021/bi961926f. [DOI] [PubMed] [Google Scholar]
- Steer B. A., Merrill A. R. Guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide: unfolding of local segments using genetically substituted tryptophan residues. Biochemistry. 1995 May 30;34(21):7225–7233. doi: 10.1021/bi00021a038. [DOI] [PubMed] [Google Scholar]
- Swaminathan R., Nath U., Udgaonkar J. B., Periasamy N., Krishnamoorthy G. Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of barstar. Biochemistry. 1996 Jul 16;35(28):9150–9157. doi: 10.1021/bi9603478. [DOI] [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
- Tsaprailis G., Chan D. W., English A. M. Conformational states in denaturants of cytochrome c and horseradish peroxidases examined by fluorescence and circular dichroism. Biochemistry. 1998 Feb 17;37(7):2004–2016. doi: 10.1021/bi971032a. [DOI] [PubMed] [Google Scholar]
- Valente-Mesquita V. L., Botelho M. M., Ferreira S. T. Pressure-induced subunit dissociation and unfolding of dimeric beta-lactoglobulin. Biophys J. 1998 Jul;75(1):471–476. doi: 10.1016/S0006-3495(98)77535-6. [DOI] [PMC free article] [PubMed] [Google Scholar]