Abstract
The issue of specificity in tyrosine kinase intracellular signaling mediated by src homology 2 (SH2) domains has great importance in the understanding how individual signals maintain their mutual exclusivity and affect downstream responses. Several proteins contain tandem SH2 domains that, on interacting with their ligand, provide a higher level of specificity than can be afforded by the interaction of a single SH2 domain. In this study, we focus on the comparison of two proteins ZAP70 and the p85 subunit of PI 3-kinase, which although distinctly different in function and general structure, possess tandem SH2 domains separated by a linker region and which bind to phosphorylated receptor molecules localized to the cell membrane. Binding studies using isothermal titration calorimetry show that these two proteins interact with peptides mimicking their physiological ligands in very different ways. In the case of the SH2 domains from ZAP70, they interact with a stoichiometry of unity, while p85 is able to make two distinct interactions, one with a stoichiometry of 1:1 and the other with two p85 molecules interacting with one receptor. The observation of two different modes of binding of p85 might be important in providing different cellular responses based on fluctuating intracellular concentration regimes of this protein. Thermodynamic data on both proteins suggest that a conformational change occurs on binding. On investigation of this structural change using a truncated form of p85 (including just the two SH2 domains and the inter-SH2 region), both NMR and circular dichroism spectroscopic studies failed to show significant changes in secondary structure. This suggests that any conformational change associated with binding is small and potentially limited to loop regions of the protein.
Full Text
The Full Text of this article is available as a PDF (360.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arpaia E., Shahar M., Dadi H., Cohen A., Roifman C. M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell. 1994 Mar 11;76(5):947–958. doi: 10.1016/0092-8674(94)90368-9. [DOI] [PubMed] [Google Scholar]
- Booker G. W., Breeze A. L., Downing A. K., Panayotou G., Gout I., Waterfield M. D., Campbell I. D. Structure of an SH2 domain of the p85 alpha subunit of phosphatidylinositol-3-OH kinase. Nature. 1992 Aug 20;358(6388):684–687. doi: 10.1038/358684a0. [DOI] [PubMed] [Google Scholar]
- Bradshaw J. M., Grucza R. A., Ladbury J. E., Waksman G. Probing the "two-pronged plug two-holed socket" model for the mechanism of binding of the Src SH2 domain to phosphotyrosyl peptides: a thermodynamic study. Biochemistry. 1998 Jun 23;37(25):9083–9090. doi: 10.1021/bi973147k. [DOI] [PubMed] [Google Scholar]
- Breeze A. L., Kara B. V., Barratt D. G., Anderson M., Smith J. C., Luke R. W., Best J. R., Cartlidge S. A. Structure of a specific peptide complex of the carboxy-terminal SH2 domain from the p85 alpha subunit of phosphatidylinositol 3-kinase. EMBO J. 1996 Jul 15;15(14):3579–3589. [PMC free article] [PubMed] [Google Scholar]
- Chan A. C., Kadlecek T. A., Elder M. E., Filipovich A. H., Kuo W. L., Iwashima M., Parslow T. G., Weiss A. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science. 1994 Jun 10;264(5165):1599–1601. doi: 10.1126/science.8202713. [DOI] [PubMed] [Google Scholar]
- Chung E., Henriques D., Renzoni D., Zvelebil M., Bradshaw J. M., Waksman G., Robinson C. V., Ladbury J. E. Mass spectrometric and thermodynamic studies reveal the role of water molecules in complexes formed between SH2 domains and tyrosyl phosphopeptides. Structure. 1998 Sep 15;6(9):1141–1151. doi: 10.1016/s0969-2126(98)00115-4. [DOI] [PubMed] [Google Scholar]
- Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
- Dhand R., Hara K., Hiles I., Bax B., Gout I., Panayotou G., Fry M. J., Yonezawa K., Kasuga M., Waterfield M. D. PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J. 1994 Feb 1;13(3):511–521. doi: 10.1002/j.1460-2075.1994.tb06289.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elder M. E., Lin D., Clever J., Chan A. C., Hope T. J., Weiss A., Parslow T. G. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science. 1994 Jun 10;264(5165):1596–1599. doi: 10.1126/science.8202712. [DOI] [PubMed] [Google Scholar]
- Escobedo J. A., Kaplan D. R., Kavanaugh W. M., Turck C. W., Williams L. T. A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol Cell Biol. 1991 Feb;11(2):1125–1132. doi: 10.1128/mcb.11.2.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fruman D. A., Snapper S. B., Yballe C. M., Davidson L., Yu J. Y., Alt F. W., Cantley L. C. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. Science. 1999 Jan 15;283(5400):393–397. doi: 10.1126/science.283.5400.393. [DOI] [PubMed] [Google Scholar]
- Fütterer K., Wong J., Grucza R. A., Chan A. C., Waksman G. Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. J Mol Biol. 1998 Aug 21;281(3):523–537. doi: 10.1006/jmbi.1998.1964. [DOI] [PubMed] [Google Scholar]
- Graef I. A., Holsinger L. J., Diver S., Schreiber S. L., Crabtree G. R. Proximity and orientation underlie signaling by the non-receptor tyrosine kinase ZAP70. EMBO J. 1997 Sep 15;16(18):5618–5628. doi: 10.1093/emboj/16.18.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grazioli L., Germain V., Weiss A., Acuto O. Anti-peptide antibodies detect conformational changes of the inter-SH2 domain of ZAP-70 due to binding to the zeta chain and to intramolecular interactions. J Biol Chem. 1998 Apr 10;273(15):8916–8921. doi: 10.1074/jbc.273.15.8916. [DOI] [PubMed] [Google Scholar]
- Grucza R. A., Fütterer K., Chan A. C., Waksman G. Thermodynamic study of the binding of the tandem-SH2 domain of the Syk kinase to a dually phosphorylated ITAM peptide: evidence for two conformers. Biochemistry. 1999 Apr 20;38(16):5024–5033. doi: 10.1021/bi9829938. [DOI] [PubMed] [Google Scholar]
- Hatada M. H., Lu X., Laird E. R., Green J., Morgenstern J. P., Lou M., Marr C. S., Phillips T. B., Ram M. K., Theriault K. Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature. 1995 Sep 7;377(6544):32–38. doi: 10.1038/377032a0. [DOI] [PubMed] [Google Scholar]
- Labadia M. E., Jakes S., Grygon C. A., Greenwood D. J., Schembri-King J., Lukas S. M., Warren T. C., Ingraham R. H. Interaction between the SH2 domains of ZAP-70 and the tyrosine-based activation motif 1 sequence of the zeta subunit of the T-cell receptor. Arch Biochem Biophys. 1997 Jun 1;342(1):117–125. doi: 10.1006/abbi.1997.0118. [DOI] [PubMed] [Google Scholar]
- Ladbury J. E., Chowdhry B. Z. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol. 1996 Oct;3(10):791–801. doi: 10.1016/s1074-5521(96)90063-0. [DOI] [PubMed] [Google Scholar]
- Ladbury J. E., Hensmann M., Panayotou G., Campbell I. D. Alternative modes of tyrosyl phosphopeptide binding to a Src family SH2 domain: implications for regulation of tyrosine kinase activity. Biochemistry. 1996 Aug 27;35(34):11062–11069. doi: 10.1021/bi960543e. [DOI] [PubMed] [Google Scholar]
- Lemmon M. A., Ladbury J. E. Thermodynamic studies of tyrosyl-phosphopeptide binding to the SH2 domain of p56lck. Biochemistry. 1994 May 3;33(17):5070–5076. doi: 10.1021/bi00183a010. [DOI] [PubMed] [Google Scholar]
- Luck L. A., Falke J. J. 19F NMR studies of the D-galactose chemosensory receptor. 1. Sugar binding yields a global structural change. Biochemistry. 1991 Apr 30;30(17):4248–4256. doi: 10.1021/bi00231a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
- Nolte R. T., Eck M. J., Schlessinger J., Shoelson S. E., Harrison S. C. Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes. Nat Struct Biol. 1996 Apr;3(4):364–374. doi: 10.1038/nsb0496-364. [DOI] [PubMed] [Google Scholar]
- Ottinger E. A., Botfield M. C., Shoelson S. E. Tandem SH2 domains confer high specificity in tyrosine kinase signaling. J Biol Chem. 1998 Jan 9;273(2):729–735. doi: 10.1074/jbc.273.2.729. [DOI] [PubMed] [Google Scholar]
- Panayotou G., Gish G., End P., Truong O., Gout I., Dhand R., Fry M. J., Hiles I., Pawson T., Waterfield M. D. Interactions between SH2 domains and tyrosine-phosphorylated platelet-derived growth factor beta-receptor sequences: analysis of kinetic parameters by a novel biosensor-based approach. Mol Cell Biol. 1993 Jun;13(6):3567–3576. doi: 10.1128/mcb.13.6.3567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
- Rordorf-Nikolic T., Van Horn D. J., Chen D., White M. F., Backer J. M. Regulation of phosphatidylinositol 3'-kinase by tyrosyl phosphoproteins. Full activation requires occupancy of both SH2 domains in the 85-kDa regulatory subunit. J Biol Chem. 1995 Feb 24;270(8):3662–3666. doi: 10.1074/jbc.270.8.3662. [DOI] [PubMed] [Google Scholar]
- Siegal G., Davis B., Kristensen S. M., Sankar A., Linacre J., Stein R. C., Panayotou G., Waterfield M. D., Driscoll P. C. Solution structure of the C-terminal SH2 domain of the p85 alpha regulatory subunit of phosphoinositide 3-kinase. J Mol Biol. 1998 Feb 20;276(2):461–478. doi: 10.1006/jmbi.1997.1562. [DOI] [PubMed] [Google Scholar]
- Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
- Songyang Z., Shoelson S. E., Chaudhuri M., Gish G., Pawson T., Haser W. G., King F., Roberts T., Ratnofsky S., Lechleider R. J. SH2 domains recognize specific phosphopeptide sequences. Cell. 1993 Mar 12;72(5):767–778. doi: 10.1016/0092-8674(93)90404-e. [DOI] [PubMed] [Google Scholar]
- Waksman G., Shoelson S. E., Pant N., Cowburn D., Kuriyan J. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell. 1993 Mar 12;72(5):779–790. doi: 10.1016/0092-8674(93)90405-f. [DOI] [PubMed] [Google Scholar]
- Yu J., Wjasow C., Backer J. M. Regulation of the p85/p110alpha phosphatidylinositol 3'-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. J Biol Chem. 1998 Nov 13;273(46):30199–30203. doi: 10.1074/jbc.273.46.30199. [DOI] [PubMed] [Google Scholar]
