Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Mar;9(3):619–622. doi: 10.1110/ps.9.3.619

Role of residue Y99 in tissue plasminogen activator.

A Vindigni 1, M Winfield 1, Y M Ayala 1, E Di Cera 1
PMCID: PMC2144573  PMID: 10752624

Abstract

The crystal structure of the fibrinolytic enzyme tissue plasminogen activator (tPA) shows that the bulky side chain of Y99 hinders access to the active site by partially occluding the S2 site and may be responsible for the low catalytic activity of tPA toward plasminogen. We have tested the role of Y99 by replacing it with Leu, the residue found in more proficient proteases like trypsin and thrombin. The Y99L replacement results in an increase in the k(cat)/Km for chromogenic substrates due to enhanced diffusion into the active site. The increase is modest (threefold) for substrates specific for tPA that carry Pro or Gly at P2, but reaches 80-fold for less specific substrates carrying Arg at P2. On the other hand, the Y99L mutation has no effect on the activity of tPA toward the natural substrate plasminogen, that carries Gly at P2, and reduces more than 10-fold the inhibition of tPA by plasminogen activator inhibitor-1 (PAI-1), that carries Ala at P2. We conclude that the steric hindrance provided by Y99 in the crystal structure affects mostly nonphysiological substrates with bulky residues at P2. In addition, residue Y99 plays an active role in the recognition of PAI-1, but not plasminogen. Mutations of Y99 could therefore afford a resistance to inhibition by PAI-1 without compromising the fibrinolytic potency of tPA, a result of potential therapeutic relevance.

Full Text

The Full Text of this article is available as a PDF (76.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collen D., Lijnen H. R. Molecular basis of fibrinolysis, as relevant for thrombolytic therapy. Thromb Haemost. 1995 Jul;74(1):167–171. [PubMed] [Google Scholar]
  2. Collins R., Peto R., Baigent C., Sleight P. Aspirin, heparin, and fibrinolytic therapy in suspected acute myocardial infarction. N Engl J Med. 1997 Mar 20;336(12):847–860. doi: 10.1056/NEJM199703203361207. [DOI] [PubMed] [Google Scholar]
  3. Dang Q. D., Di Cera E. Chromogenic substrates selective for activated protein C. Blood. 1997 Mar 15;89(6):2220–2222. [PubMed] [Google Scholar]
  4. Dang Q., Frieden C. New PC versions of the kinetic-simulation and fitting programs, KINSIM and FITSIM. Trends Biochem Sci. 1997 Aug;22(8):317–317. doi: 10.1016/s0968-0004(97)01062-1. [DOI] [PubMed] [Google Scholar]
  5. Di Cera E. Anticoagulant thrombins. Trends Cardiovasc Med. 1998 Nov;8(8):340–350. doi: 10.1016/s1050-1738(98)00030-9. [DOI] [PubMed] [Google Scholar]
  6. Egan J. O., Kalafatis M., Mann K. G. The effect of Arg306-->Ala and Arg506-->Gln substitutions in the inactivation of recombinant human factor Va by activated protein C and protein S. Protein Sci. 1997 Sep;6(9):2016–2027. doi: 10.1002/pro.5560060922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Higgins D. L., Lamb M. C., Young S. L., Powers D. B., Anderson S. The effect of the one-chain to two-chain conversion in tissue plasminogen activator: characterization of mutations at position 275. Thromb Res. 1990 Feb 15;57(4):527–539. doi: 10.1016/0049-3848(90)90070-s. [DOI] [PubMed] [Google Scholar]
  8. Holmes W. E., Nelles L., Lijnen H. R., Collen D. Primary structure of human alpha 2-antiplasmin, a serine protease inhibitor (serpin). J Biol Chem. 1987 Feb 5;262(4):1659–1664. [PubMed] [Google Scholar]
  9. Hopfner K. P., Lang A., Karcher A., Sichler K., Kopetzki E., Brandstetter H., Huber R., Bode W., Engh R. A. Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. Structure. 1999 Aug 15;7(8):989–996. doi: 10.1016/s0969-2126(99)80125-7. [DOI] [PubMed] [Google Scholar]
  10. Hoylaerts M., Rijken D. C., Lijnen H. R., Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982 Mar 25;257(6):2912–2919. [PubMed] [Google Scholar]
  11. Kalafatis M., Rand M. D., Mann K. G. The mechanism of inactivation of human factor V and human factor Va by activated protein C. J Biol Chem. 1994 Dec 16;269(50):31869–31880. [PubMed] [Google Scholar]
  12. Lamba D., Bauer M., Huber R., Fischer S., Rudolph R., Kohnert U., Bode W. The 2.3 A crystal structure of the catalytic domain of recombinant two-chain human tissue-type plasminogen activator. J Mol Biol. 1996 Apr 26;258(1):117–135. doi: 10.1006/jmbi.1996.0238. [DOI] [PubMed] [Google Scholar]
  13. Ludlam C. A., Bennett B., Fox K. A., Lowe G. D., Reid A. W. Guidelines for the use of thrombolytic therapy. Haemostasis and Thrombosis Task Force of the British Committee for Standards in Haematology. Blood Coagul Fibrinolysis. 1995 May;6(3):273–285. [PubMed] [Google Scholar]
  14. Madison E. L., Goldsmith E. J., Gerard R. D., Gething M. J., Sambrook J. F., Bassel-Duby R. S. Amino acid residues that affect interaction of tissue-type plasminogen activator with plasminogen activator inhibitor 1. Proc Natl Acad Sci U S A. 1990 May;87(9):3530–3533. doi: 10.1073/pnas.87.9.3530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Madison E. L., Goldsmith E. J., Gerard R. D., Gething M. J., Sambrook J. F. Serpin-resistant mutants of human tissue-type plasminogen activator. Nature. 1989 Jun 29;339(6227):721–724. doi: 10.1038/339721a0. [DOI] [PubMed] [Google Scholar]
  16. Renatus M., Bode W., Huber R., Stürzebecher J., Stubbs M. T. Structural and functional analyses of benzamidine-based inhibitors in complex with trypsin: implications for the inhibition of factor Xa, tPA, and urokinase. J Med Chem. 1998 Dec 31;41(27):5445–5456. doi: 10.1021/jm981068g. [DOI] [PubMed] [Google Scholar]
  17. Rezaie A. R. Reactivities of the S2 and S3 subsite residues of thrombin with the native and heparin-induced conformers of antithrombin. Protein Sci. 1998 Feb;7(2):349–357. doi: 10.1002/pro.5560070215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rezaie A. R. Role of Leu99 of thrombin in determining the P2 specificity of serpins. Biochemistry. 1997 Jun 17;36(24):7437–7446. doi: 10.1021/bi962965u. [DOI] [PubMed] [Google Scholar]
  19. Tsiang M., Jain A. K., Gibbs C. S. Functional requirements for inhibition of thrombin by antithrombin III in the presence and absence of heparin. J Biol Chem. 1997 May 2;272(18):12024–12029. doi: 10.1074/jbc.272.18.12024. [DOI] [PubMed] [Google Scholar]
  20. Vindigni A., Di Cera E. Release of fibrinopeptides by the slow and fast forms of thrombin. Biochemistry. 1996 Apr 9;35(14):4417–4426. doi: 10.1021/bi952834d. [DOI] [PubMed] [Google Scholar]
  21. Vindigni A., Di Cera E. Role of P225 and the C136-C201 disulfide bond in tissue plasminogen activator. Protein Sci. 1998 Aug;7(8):1728–1737. doi: 10.1002/pro.5560070807. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES