Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Mar;9(3):525–535. doi: 10.1110/ps.9.3.525

Early intermediates in the PDI-assisted folding of ribonuclease A.

F Vinci 1, M Ruoppolo 1, P Pucci 1, R B Freedman 1, G Marino 1
PMCID: PMC2144577  PMID: 10752614

Abstract

The oxidative refolding of ribonuclease A has been investigated in several experimental conditions using a variety of redox systems. All these studies agree that the formation of disulfide bonds during the process occurs through a nonrandom mechanism with a preferential coupling of certain cysteine residues. We have previously demonstrated that in the presence of glutathione the refolding process occurs through the reiteration of two sequential reactions: a mixed disulfide with glutathione is produced first which evolves to form an intramolecular S-S bond. In the same experimental conditions, protein disulfide isomerase (PDI) was shown to catalyze formation and reduction of mixed disulfides with glutathione as well as formation of intramolecular S-S bonds. This paper reports the structural characterization of the one-disulfide intermediate population during the oxidative refolding of Ribonuclease A under the presence of PDI and glutathione with the aim of defining the role of the enzyme at the early stages of the reaction. The one-disulfide intermediate population occurring at the early stages of both the uncatalyzed and the PDI-catalyzed refolding was purified and structurally characterized by proteolytic digestion followed by MALDI-MS and LC/ESIMS analyses. In the uncatalyzed refolding, a total of 12 disulfide bonds out of the 28 theoretical possible cysteine couplings was observed, confirming a nonrandom distribution of native and nonnative disulfide bonds. Under the presence of PDI, only two additional nonnative disulfides were detected. Semiquantitative LC/ESIMS analysis of the distribution of the S-S bridged peptides showed that the most abundant species were equally populated in both the uncatalyzed and the catalyzed process. This paper shows the first structural characterization of the one-disulfide intermediate population formed transiently during the refolding of ribonuclease A in quasi-physiological conditions that mimic those present in the ER lumen. At the early stages of the process, three of the four native disulfides are detected, whereas the Cys26-Cys84 pairing is absent. Most of the nonnative disulfide bonds identified are formed by nearest-neighboring cysteines. The presence of PDI does not significantly alter the distribution of S-S bonds, suggesting that the ensemble of single-disulfide species is formed under thermodynamic control.

Full Text

The Full Text of this article is available as a PDF (380.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Bardwell J. C., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991 Nov 1;67(3):581–589. doi: 10.1016/0092-8674(91)90532-4. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Creighton T. E. Conformational restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor. J Mol Biol. 1977 Jun 25;113(2):275–293. doi: 10.1016/0022-2836(77)90142-5. [DOI] [PubMed] [Google Scholar]
  5. Creighton T. E. Intermediates in the refolding of reduced ribonuclease A. J Mol Biol. 1979 Apr 15;129(3):411–431. doi: 10.1016/0022-2836(79)90504-7. [DOI] [PubMed] [Google Scholar]
  6. Freedman R. B., Hawkins H. C., McLaughlin S. H. Protein disulfide-isomerase. Methods Enzymol. 1995;251:397–406. doi: 10.1016/0076-6879(95)51143-1. [DOI] [PubMed] [Google Scholar]
  7. Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
  8. Gilbert H. F. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol. 1990;63:69–172. doi: 10.1002/9780470123096.ch2. [DOI] [PubMed] [Google Scholar]
  9. Gilbert H. F. Protein disulfide isomerase and assisted protein folding. J Biol Chem. 1997 Nov 21;272(47):29399–29402. doi: 10.1074/jbc.272.47.29399. [DOI] [PubMed] [Google Scholar]
  10. Gray W. R. Disulfide structures of highly bridged peptides: a new strategy for analysis. Protein Sci. 1993 Oct;2(10):1732–1748. doi: 10.1002/pro.5560021017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hantgan R. R., Hammes G. G., Scheraga H. A. Pathways of folding of reduced bovine pancreatic ribonuclease. Biochemistry. 1974 Aug 13;13(17):3421–3431. doi: 10.1021/bi00714a001. [DOI] [PubMed] [Google Scholar]
  12. Iwaoka M., Juminaga D., Scheraga H. A. Regeneration of three-disulfide mutants of bovine pancreatic ribonuclease A missing the 65-72 disulfide bond: characterization of a minor folding pathway of ribonuclease A and kinetic roles of Cys65 and Cys72. Biochemistry. 1998 Mar 31;37(13):4490–4501. doi: 10.1021/bi9725327. [DOI] [PubMed] [Google Scholar]
  13. Klappa P., Ruddock L. W., Darby N. J., Freedman R. B. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 1998 Feb 16;17(4):927–935. doi: 10.1093/emboj/17.4.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laboissiere M. C., Sturley S. L., Raines R. T. The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds. J Biol Chem. 1995 Nov 24;270(47):28006–28009. doi: 10.1074/jbc.270.47.28006. [DOI] [PubMed] [Google Scholar]
  15. Li Y. J., Rothwarf D. M., Scheraga H. A. Mechanism of reductive protein unfolding. Nat Struct Biol. 1995 Jun;2(6):489–494. doi: 10.1038/nsb0695-489. [DOI] [PubMed] [Google Scholar]
  16. Lundström-Ljung J., Holmgren A. Glutaredoxin accelerates glutathione-dependent folding of reduced ribonuclease A together with protein disulfide-isomerase. J Biol Chem. 1995 Apr 7;270(14):7822–7828. doi: 10.1074/jbc.270.14.7822. [DOI] [PubMed] [Google Scholar]
  17. Lustig B., Fink A. L. Secondary structure formation precedes tertiary structure in the refolding of ribonuclease A. Biochim Biophys Acta. 1992 May 22;1121(1-2):229–233. doi: 10.1016/0167-4838(92)90359-l. [DOI] [PubMed] [Google Scholar]
  18. Morris H. R., Pucci P. A new method for rapid assignment of S-S bridges in proteins. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1122–1128. doi: 10.1016/0006-291x(85)90302-x. [DOI] [PubMed] [Google Scholar]
  19. Rothwarf D. M., Li Y. J., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A: detailed kinetic analysis of two independent folding pathways. Biochemistry. 1998 Mar 17;37(11):3767–3776. doi: 10.1021/bi972823f. [DOI] [PubMed] [Google Scholar]
  20. Rothwarf D. M., Li Y. J., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A: identification of two nativelike three-disulfide intermediates involved in separate pathways. Biochemistry. 1998 Mar 17;37(11):3760–3766. doi: 10.1021/bi972822n. [DOI] [PubMed] [Google Scholar]
  21. Rothwarf D. M., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A. 1. Steady-state distribution. Biochemistry. 1993 Mar 16;32(10):2671–2679. doi: 10.1021/bi00061a027. [DOI] [PubMed] [Google Scholar]
  22. Rothwarf D. M., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A. 2. Kinetics of regeneration. Biochemistry. 1993 Mar 16;32(10):2680–2689. doi: 10.1021/bi00061a028. [DOI] [PubMed] [Google Scholar]
  23. Rothwarf D. M., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A. 3. Dependence on the nature of the redox reagent. Biochemistry. 1993 Mar 16;32(10):2690–2697. doi: 10.1021/bi00061a029. [DOI] [PubMed] [Google Scholar]
  24. Ruoppolo M., Freedman R. B., Pucci P., Marino G. Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase. Biochemistry. 1996 Oct 22;35(42):13636–13646. doi: 10.1021/bi960755b. [DOI] [PubMed] [Google Scholar]
  25. Ruoppolo M., Lundström-Ljung J., Talamo F., Pucci P., Marino G. Effect of glutaredoxin and protein disulfide isomerase on the glutathione-dependent folding of ribonuclease A. Biochemistry. 1997 Oct 7;36(40):12259–12267. doi: 10.1021/bi970851s. [DOI] [PubMed] [Google Scholar]
  26. Ruoppolo M., Moutiez M., Mazzeo M. F., Pucci P., Ménez A., Marino G., Quéméneur E. The length of a single turn controls the overall folding rate of "three-fingered" snake toxins. Biochemistry. 1998 Nov 17;37(46):16060–16068. doi: 10.1021/bi981492j. [DOI] [PubMed] [Google Scholar]
  27. Ruoppolo M., Torella C., Kanda F., Panico M., Pucci P., Marino G., Morris H. R. Identification of disulphide bonds in the refolding of bovine pancreatic RNase A. Fold Des. 1996;1(5):381–390. doi: 10.1016/S1359-0278(96)00053-3. [DOI] [PubMed] [Google Scholar]
  28. Schaffer S. W., Ahmed A. K., Wetlaufer D. B. Salt effects in the glutathione-facilitated reactivation of reduced bovine pancreatic ribonuclease. J Biol Chem. 1975 Nov 10;250(21):8483–8486. [PubMed] [Google Scholar]
  29. Scheraga H. A., Konishi Y., Ooi T. Multiple pathways for regenerating ribonuclease A. Adv Biophys. 1984;18:21–41. doi: 10.1016/0065-227x(84)90005-4. [DOI] [PubMed] [Google Scholar]
  30. Torella C., Ruoppolo M., Marino G., Pucci P. Analysis of RNase A refolding intermediates by electrospray/mass spectrometry. FEBS Lett. 1994 Oct 3;352(3):301–306. doi: 10.1016/0014-5793(94)00966-x. [DOI] [PubMed] [Google Scholar]
  31. Walker K. W., Gilbert H. F. Scanning and escape during protein-disulfide isomerase-assisted protein folding. J Biol Chem. 1997 Apr 4;272(14):8845–8848. doi: 10.1074/jbc.272.14.8845. [DOI] [PubMed] [Google Scholar]
  32. Weissman J. S., Kim P. S. Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature. 1993 Sep 9;365(6442):185–188. doi: 10.1038/365185a0. [DOI] [PubMed] [Google Scholar]
  33. Weissman J. S., Kim P. S. Reexamination of the folding of BPTI: predominance of native intermediates. Science. 1991 Sep 20;253(5026):1386–1393. doi: 10.1126/science.1716783. [DOI] [PubMed] [Google Scholar]
  34. Xu X., Rothwarf D. M., Scheraga H. A. Nonrandom distribution of the one-disulfide intermediates in the regeneration of ribonuclease A. Biochemistry. 1996 May 21;35(20):6406–6417. doi: 10.1021/bi960090d. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES