Abstract
The oxidative refolding of ribonuclease A has been investigated in several experimental conditions using a variety of redox systems. All these studies agree that the formation of disulfide bonds during the process occurs through a nonrandom mechanism with a preferential coupling of certain cysteine residues. We have previously demonstrated that in the presence of glutathione the refolding process occurs through the reiteration of two sequential reactions: a mixed disulfide with glutathione is produced first which evolves to form an intramolecular S-S bond. In the same experimental conditions, protein disulfide isomerase (PDI) was shown to catalyze formation and reduction of mixed disulfides with glutathione as well as formation of intramolecular S-S bonds. This paper reports the structural characterization of the one-disulfide intermediate population during the oxidative refolding of Ribonuclease A under the presence of PDI and glutathione with the aim of defining the role of the enzyme at the early stages of the reaction. The one-disulfide intermediate population occurring at the early stages of both the uncatalyzed and the PDI-catalyzed refolding was purified and structurally characterized by proteolytic digestion followed by MALDI-MS and LC/ESIMS analyses. In the uncatalyzed refolding, a total of 12 disulfide bonds out of the 28 theoretical possible cysteine couplings was observed, confirming a nonrandom distribution of native and nonnative disulfide bonds. Under the presence of PDI, only two additional nonnative disulfides were detected. Semiquantitative LC/ESIMS analysis of the distribution of the S-S bridged peptides showed that the most abundant species were equally populated in both the uncatalyzed and the catalyzed process. This paper shows the first structural characterization of the one-disulfide intermediate population formed transiently during the refolding of ribonuclease A in quasi-physiological conditions that mimic those present in the ER lumen. At the early stages of the process, three of the four native disulfides are detected, whereas the Cys26-Cys84 pairing is absent. Most of the nonnative disulfide bonds identified are formed by nearest-neighboring cysteines. The presence of PDI does not significantly alter the distribution of S-S bonds, suggesting that the ensemble of single-disulfide species is formed under thermodynamic control.
Full Text
The Full Text of this article is available as a PDF (380.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
- Bardwell J. C., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991 Nov 1;67(3):581–589. doi: 10.1016/0092-8674(91)90532-4. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. Conformational restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor. J Mol Biol. 1977 Jun 25;113(2):275–293. doi: 10.1016/0022-2836(77)90142-5. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. Intermediates in the refolding of reduced ribonuclease A. J Mol Biol. 1979 Apr 15;129(3):411–431. doi: 10.1016/0022-2836(79)90504-7. [DOI] [PubMed] [Google Scholar]
- Freedman R. B., Hawkins H. C., McLaughlin S. H. Protein disulfide-isomerase. Methods Enzymol. 1995;251:397–406. doi: 10.1016/0076-6879(95)51143-1. [DOI] [PubMed] [Google Scholar]
- Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
- Gilbert H. F. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol. 1990;63:69–172. doi: 10.1002/9780470123096.ch2. [DOI] [PubMed] [Google Scholar]
- Gilbert H. F. Protein disulfide isomerase and assisted protein folding. J Biol Chem. 1997 Nov 21;272(47):29399–29402. doi: 10.1074/jbc.272.47.29399. [DOI] [PubMed] [Google Scholar]
- Gray W. R. Disulfide structures of highly bridged peptides: a new strategy for analysis. Protein Sci. 1993 Oct;2(10):1732–1748. doi: 10.1002/pro.5560021017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hantgan R. R., Hammes G. G., Scheraga H. A. Pathways of folding of reduced bovine pancreatic ribonuclease. Biochemistry. 1974 Aug 13;13(17):3421–3431. doi: 10.1021/bi00714a001. [DOI] [PubMed] [Google Scholar]
- Iwaoka M., Juminaga D., Scheraga H. A. Regeneration of three-disulfide mutants of bovine pancreatic ribonuclease A missing the 65-72 disulfide bond: characterization of a minor folding pathway of ribonuclease A and kinetic roles of Cys65 and Cys72. Biochemistry. 1998 Mar 31;37(13):4490–4501. doi: 10.1021/bi9725327. [DOI] [PubMed] [Google Scholar]
- Klappa P., Ruddock L. W., Darby N. J., Freedman R. B. The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 1998 Feb 16;17(4):927–935. doi: 10.1093/emboj/17.4.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laboissiere M. C., Sturley S. L., Raines R. T. The essential function of protein-disulfide isomerase is to unscramble non-native disulfide bonds. J Biol Chem. 1995 Nov 24;270(47):28006–28009. doi: 10.1074/jbc.270.47.28006. [DOI] [PubMed] [Google Scholar]
- Li Y. J., Rothwarf D. M., Scheraga H. A. Mechanism of reductive protein unfolding. Nat Struct Biol. 1995 Jun;2(6):489–494. doi: 10.1038/nsb0695-489. [DOI] [PubMed] [Google Scholar]
- Lundström-Ljung J., Holmgren A. Glutaredoxin accelerates glutathione-dependent folding of reduced ribonuclease A together with protein disulfide-isomerase. J Biol Chem. 1995 Apr 7;270(14):7822–7828. doi: 10.1074/jbc.270.14.7822. [DOI] [PubMed] [Google Scholar]
- Lustig B., Fink A. L. Secondary structure formation precedes tertiary structure in the refolding of ribonuclease A. Biochim Biophys Acta. 1992 May 22;1121(1-2):229–233. doi: 10.1016/0167-4838(92)90359-l. [DOI] [PubMed] [Google Scholar]
- Morris H. R., Pucci P. A new method for rapid assignment of S-S bridges in proteins. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1122–1128. doi: 10.1016/0006-291x(85)90302-x. [DOI] [PubMed] [Google Scholar]
- Rothwarf D. M., Li Y. J., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A: detailed kinetic analysis of two independent folding pathways. Biochemistry. 1998 Mar 17;37(11):3767–3776. doi: 10.1021/bi972823f. [DOI] [PubMed] [Google Scholar]
- Rothwarf D. M., Li Y. J., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A: identification of two nativelike three-disulfide intermediates involved in separate pathways. Biochemistry. 1998 Mar 17;37(11):3760–3766. doi: 10.1021/bi972822n. [DOI] [PubMed] [Google Scholar]
- Rothwarf D. M., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A. 1. Steady-state distribution. Biochemistry. 1993 Mar 16;32(10):2671–2679. doi: 10.1021/bi00061a027. [DOI] [PubMed] [Google Scholar]
- Rothwarf D. M., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A. 2. Kinetics of regeneration. Biochemistry. 1993 Mar 16;32(10):2680–2689. doi: 10.1021/bi00061a028. [DOI] [PubMed] [Google Scholar]
- Rothwarf D. M., Scheraga H. A. Regeneration of bovine pancreatic ribonuclease A. 3. Dependence on the nature of the redox reagent. Biochemistry. 1993 Mar 16;32(10):2690–2697. doi: 10.1021/bi00061a029. [DOI] [PubMed] [Google Scholar]
- Ruoppolo M., Freedman R. B., Pucci P., Marino G. Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase. Biochemistry. 1996 Oct 22;35(42):13636–13646. doi: 10.1021/bi960755b. [DOI] [PubMed] [Google Scholar]
- Ruoppolo M., Lundström-Ljung J., Talamo F., Pucci P., Marino G. Effect of glutaredoxin and protein disulfide isomerase on the glutathione-dependent folding of ribonuclease A. Biochemistry. 1997 Oct 7;36(40):12259–12267. doi: 10.1021/bi970851s. [DOI] [PubMed] [Google Scholar]
- Ruoppolo M., Moutiez M., Mazzeo M. F., Pucci P., Ménez A., Marino G., Quéméneur E. The length of a single turn controls the overall folding rate of "three-fingered" snake toxins. Biochemistry. 1998 Nov 17;37(46):16060–16068. doi: 10.1021/bi981492j. [DOI] [PubMed] [Google Scholar]
- Ruoppolo M., Torella C., Kanda F., Panico M., Pucci P., Marino G., Morris H. R. Identification of disulphide bonds in the refolding of bovine pancreatic RNase A. Fold Des. 1996;1(5):381–390. doi: 10.1016/S1359-0278(96)00053-3. [DOI] [PubMed] [Google Scholar]
- Schaffer S. W., Ahmed A. K., Wetlaufer D. B. Salt effects in the glutathione-facilitated reactivation of reduced bovine pancreatic ribonuclease. J Biol Chem. 1975 Nov 10;250(21):8483–8486. [PubMed] [Google Scholar]
- Scheraga H. A., Konishi Y., Ooi T. Multiple pathways for regenerating ribonuclease A. Adv Biophys. 1984;18:21–41. doi: 10.1016/0065-227x(84)90005-4. [DOI] [PubMed] [Google Scholar]
- Torella C., Ruoppolo M., Marino G., Pucci P. Analysis of RNase A refolding intermediates by electrospray/mass spectrometry. FEBS Lett. 1994 Oct 3;352(3):301–306. doi: 10.1016/0014-5793(94)00966-x. [DOI] [PubMed] [Google Scholar]
- Walker K. W., Gilbert H. F. Scanning and escape during protein-disulfide isomerase-assisted protein folding. J Biol Chem. 1997 Apr 4;272(14):8845–8848. doi: 10.1074/jbc.272.14.8845. [DOI] [PubMed] [Google Scholar]
- Weissman J. S., Kim P. S. Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature. 1993 Sep 9;365(6442):185–188. doi: 10.1038/365185a0. [DOI] [PubMed] [Google Scholar]
- Weissman J. S., Kim P. S. Reexamination of the folding of BPTI: predominance of native intermediates. Science. 1991 Sep 20;253(5026):1386–1393. doi: 10.1126/science.1716783. [DOI] [PubMed] [Google Scholar]
- Xu X., Rothwarf D. M., Scheraga H. A. Nonrandom distribution of the one-disulfide intermediates in the regeneration of ribonuclease A. Biochemistry. 1996 May 21;35(20):6406–6417. doi: 10.1021/bi960090d. [DOI] [PubMed] [Google Scholar]