Abstract
An analysis of the pairwise side-chain packing geometries of cysteine residues observed in high-resolution protein crystal structures indicates that cysteine pairs have pronounced orientational preferences due to the geometric constraints of disulfide bond formation. A potential function was generated from these observations and used to evaluate models for novel disulfide bonds in human carbonic anhydrase II (HCAII). Three double-cysteine variants of HCAII were purified and the effective concentrations of their thiol groups were determined by titrations with glutathione and dithiothreitol. The effects of the cysteine mutations on the native state structure and stability were characterized by circular dichroism, enzymatic activity, sulfonamide binding, and guanidine hydrochloride titration. These analyses indicate that the PAIRWISE potential is a good predictor of the strength of the disulfide bond itself, but the overall structural and thermodynamic effects on the protein are complicated by additional factors. In particular, the effects of cysteine substitutions on the native state and the stabilization of compact nonnative states by the disulfide can override any stabilizing effect of the cross-link.
Full Text
The Full Text of this article is available as a PDF (370.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong J. M., Myers D. V., Verpoorte J. A., Edsall J. T. Purification and properties of human erythrocyte carbonic anhydrases. J Biol Chem. 1966 Nov 10;241(21):5137–5149. [PubMed] [Google Scholar]
- Betz S. F. Disulfide bonds and the stability of globular proteins. Protein Sci. 1993 Oct;2(10):1551–1558. doi: 10.1002/pro.5560021002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betz S. F., Marmorino J. L., Saunders A. J., Doyle D. F., Young G. B., Pielak G. J. Unusual effects of an engineered disulfide on global and local protein stability. Biochemistry. 1996 Jun 11;35(23):7422–7428. doi: 10.1021/bi9528558. [DOI] [PubMed] [Google Scholar]
- Clarke J., Henrick K., Fersht A. R. Disulfide mutants of barnase. I: Changes in stability and structure assessed by biophysical methods and X-ray crystallography. J Mol Biol. 1995 Oct 27;253(3):493–504. doi: 10.1006/jmbi.1995.0568. [DOI] [PubMed] [Google Scholar]
- Cooper A., Eyles S. J., Radford S. E., Dobson C. M. Thermodynamic consequences of the removal of a disulphide bridge from hen lysozyme. J Mol Biol. 1992 Jun 20;225(4):939–943. doi: 10.1016/0022-2836(92)90094-z. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. An empirical approach to protein conformation stability and flexibility. Biopolymers. 1983 Jan;22(1):49–58. doi: 10.1002/bip.360220110. [DOI] [PubMed] [Google Scholar]
- Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
- Eriksson A. E., Jones T. A., Liljas A. Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins. 1988;4(4):274–282. doi: 10.1002/prot.340040406. [DOI] [PubMed] [Google Scholar]
- Fierke C. A., Calderone T. L., Krebs J. F. Functional consequences of engineering the hydrophobic pocket of carbonic anhydrase II. Biochemistry. 1991 Nov 19;30(46):11054–11063. doi: 10.1021/bi00110a007. [DOI] [PubMed] [Google Scholar]
- Freskgård P. O., Mårtensson L. G., Jonasson P., Jonsson B. H., Carlsson U. Assignment of the contribution of the tryptophan residues to the circular dichroism spectrum of human carbonic anhydrase II. Biochemistry. 1994 Nov 29;33(47):14281–14288. doi: 10.1021/bi00251a041. [DOI] [PubMed] [Google Scholar]
- Goldenberg D. P., Bekeart L. S., Laheru D. A., Zhou J. D. Probing the determinants of disulfide stability in native pancreatic trypsin inhibitor. Biochemistry. 1993 Mar 23;32(11):2835–2844. doi: 10.1021/bi00062a015. [DOI] [PubMed] [Google Scholar]
- Grassetti D. R., Murray J. F., Jr Determination of sulfhydryl groups with 2,2'- or 4,4'-dithiodipyridine. Arch Biochem Biophys. 1967 Mar;119(1):41–49. doi: 10.1016/0003-9861(67)90426-2. [DOI] [PubMed] [Google Scholar]
- Harrison P. M., Sternberg M. J. The disulphide beta-cross: from cystine geometry and clustering to classification of small disulphide-rich protein folds. J Mol Biol. 1996 Dec 6;264(3):603–623. doi: 10.1006/jmbi.1996.0664. [DOI] [PubMed] [Google Scholar]
- Hazes B., Dijkstra B. W. Model building of disulfide bonds in proteins with known three-dimensional structure. Protein Eng. 1988 Jul;2(2):119–125. doi: 10.1093/protein/2.2.119. [DOI] [PubMed] [Google Scholar]
- Hinck A. P., Truckses D. M., Markley J. L. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein. Biochemistry. 1996 Aug 13;35(32):10328–10338. doi: 10.1021/bi960309o. [DOI] [PubMed] [Google Scholar]
- Hobohm U., Sander C. Enlarged representative set of protein structures. Protein Sci. 1994 Mar;3(3):522–524. doi: 10.1002/pro.5560030317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Håkansson K., Carlsson M., Svensson L. A., Liljas A. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol. 1992 Oct 20;227(4):1192–1204. doi: 10.1016/0022-2836(92)90531-n. [DOI] [PubMed] [Google Scholar]
- Kanaya S., Katsuda C., Kimura S., Nakai T., Kitakuni E., Nakamura H., Katayanagi K., Morikawa K., Ikehara M. Stabilization of Escherichia coli ribonuclease H by introduction of an artificial disulfide bond. J Biol Chem. 1991 Apr 5;266(10):6038–6044. [PubMed] [Google Scholar]
- Khalifah R. G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971 Apr 25;246(8):2561–2573. [PubMed] [Google Scholar]
- Krebs J. F., Fierke C. A. Determinants of catalytic activity and stability of carbonic anhydrase II as revealed by random mutagenesis. J Biol Chem. 1993 Jan 15;268(2):948–954. [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Lin T. Y., Kim P. S. Evaluating the effects of a single amino acid substitution on both the native and denatured states of a protein. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10573–10577. doi: 10.1073/pnas.88.23.10573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin T. Y., Kim P. S. Urea dependence of thiol-disulfide equilibria in thioredoxin: confirmation of the linkage relationship and a sensitive assay for structure. Biochemistry. 1989 Jun 13;28(12):5282–5287. doi: 10.1021/bi00438a054. [DOI] [PubMed] [Google Scholar]
- Mansfeld J., Vriend G., Dijkstra B. W., Veltman O. R., Van den Burg B., Venema G., Ulbrich-Hofmann R., Eijsink V. G. Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. J Biol Chem. 1997 Apr 25;272(17):11152–11156. doi: 10.1074/jbc.272.17.11152. [DOI] [PubMed] [Google Scholar]
- Matsumura M., Matthews B. W. Stabilization of functional proteins by introduction of multiple disulfide bonds. Methods Enzymol. 1991;202:336–356. doi: 10.1016/0076-6879(91)02018-5. [DOI] [PubMed] [Google Scholar]
- Mårtensson L. G., Jonsson B. H., Andersson M., Kihlgren A., Bergenhem N., Carlsson U. Role of an evolutionarily invariant serine for the stability of human carbonic anhydrase II. Biochim Biophys Acta. 1992 Jan 9;1118(2):179–186. doi: 10.1016/0167-4838(92)90148-7. [DOI] [PubMed] [Google Scholar]
- Mårtensson L. G., Jonsson B. H., Freskgård P. O., Kihlgren A., Svensson M., Carlsson U. Characterization of folding intermediates of human carbonic anhydrase II: probing substructure by chemical labeling of SH groups introduced by site-directed mutagenesis. Biochemistry. 1993 Jan 12;32(1):224–231. doi: 10.1021/bi00052a029. [DOI] [PubMed] [Google Scholar]
- Nair S. K., Calderone T. L., Christianson D. W., Fierke C. A. Altering the mouth of a hydrophobic pocket. Structure and kinetics of human carbonic anhydrase II mutants at residue Val-121. J Biol Chem. 1991 Sep 15;266(26):17320–17325. [PubMed] [Google Scholar]
- Nair S. K., Elbaum D., Christianson D. W. Unexpected binding mode of the sulfonamide fluorophore 5-dimethylamino-1-naphthalene sulfonamide to human carbonic anhydrase II. Implications for the development of a zinc biosensor. J Biol Chem. 1996 Jan 12;271(2):1003–1007. doi: 10.1074/jbc.271.2.1003. [DOI] [PubMed] [Google Scholar]
- Pabo C. O., Suchanek E. G. Computer-aided model-building strategies for protein design. Biochemistry. 1986 Oct 7;25(20):5987–5991. doi: 10.1021/bi00368a023. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Pace C. N., Grimsley G. R., Thomson J. A., Barnett B. J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988 Aug 25;263(24):11820–11825. [PubMed] [Google Scholar]
- Pace C. N., Laurents D. V., Thomson J. A. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochemistry. 1990 Mar 13;29(10):2564–2572. doi: 10.1021/bi00462a019. [DOI] [PubMed] [Google Scholar]
- Petersen M. T., Jonson P. H., Petersen S. B. Amino acid neighbours and detailed conformational analysis of cysteines in proteins. Protein Eng. 1999 Jul;12(7):535–548. doi: 10.1093/protein/12.7.535. [DOI] [PubMed] [Google Scholar]
- Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarz H., Hinz H. J., Mehlich A., Tschesche H., Wenzel H. R. Stability studies on derivatives of the bovine pancreatic trypsin inhibitor. Biochemistry. 1987 Jun 16;26(12):3544–3551. doi: 10.1021/bi00386a044. [DOI] [PubMed] [Google Scholar]
- Thornton J. M. Disulphide bridges in globular proteins. J Mol Biol. 1981 Sep 15;151(2):261–287. doi: 10.1016/0022-2836(81)90515-5. [DOI] [PubMed] [Google Scholar]
- Tweedy N. B., Nair S. K., Paterno S. A., Fierke C. A., Christianson D. W. Structure and energetics of a non-proline cis-peptidyl linkage in a proline-202-->alanine carbonic anhydrase II variant. Biochemistry. 1993 Oct 19;32(41):10944–10949. doi: 10.1021/bi00092a003. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Nakamura A., Fukuda Y., Saitô N. Mechanism of protein folding. III. Disulfide bonding. Biophys Chem. 1991 Jul;40(3):293–301. doi: 10.1016/0301-4622(91)80027-o. [DOI] [PubMed] [Google Scholar]
- Zhou N. E., Kay C. M., Hodges R. S. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil. Biochemistry. 1993 Mar 30;32(12):3178–3187. doi: 10.1021/bi00063a033. [DOI] [PubMed] [Google Scholar]
- Zhu H., Dupureur C. M., Zhang X., Tsai M. D. Phospholipase A2 engineering. The roles of disulfide bonds in structure, conformational stability, and catalytic function. Biochemistry. 1995 Nov 21;34(46):15307–15314. doi: 10.1021/bi00046a040. [DOI] [PubMed] [Google Scholar]
- van den Akker F., Feil I. K., Roach C., Platas A. A., Merritt E. A., Hol W. G. Crystal structure of heat-labile enterotoxin from Escherichia coli with increased thermostability introduced by an engineered disulfide bond in the A subunit. Protein Sci. 1997 Dec;6(12):2644–2649. doi: 10.1002/pro.5560061219. [DOI] [PMC free article] [PubMed] [Google Scholar]