Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Apr;9(4):647–654. doi: 10.1110/ps.9.4.647

Mutational analysis of the major coat protein of M13 identifies residues that control protein display.

G A Weiss 1, J A Wells 1, S S Sidhu 1
PMCID: PMC2144610  PMID: 10794407

Abstract

We have reported variants of the M13 bacteriophage major coat protein (P8) that enable high copy display of monomeric and oligomeric proteins, such as human growth hormone and steptavidin, on the surface of phage particles (Sidhu SS, Weiss GA, Wells JA. 2000. High copy display of large proteins on phage for functional selections. J Mol Biol 296:487-495). Here, we explore how an optimized P8 variant (opti-P8) could evolve the ability to efficiently display a protein fused to its N-terminus. Reversion of individual opti-P8 residues back to the wild-type P8 residue identifies a limited set of hydrophobic residues responsible for the high copy protein display. These hydrophobic amino acids bracket a conserved hydrophobic face on the P8 alpha helix thought to be in contact with the phage coat. Mutations additively combine to promote high copy protein display, which was further enhanced by optimization of the linker between the phage coat and the fusion protein. These data are consistent with a model in which protein display-enhancing mutations allow for better packing of the fusion protein into the phage coat. The high tolerance for phage coat protein mutations observed here suggests that filamentous phage coat proteins could readily evolve new capabilities.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chappel J. A., He M., Kang A. S. Modulation of antibody display on M13 filamentous phage. J Immunol Methods. 1998 Dec 1;221(1-2):25–34. doi: 10.1016/s0022-1759(98)00094-5. [DOI] [PubMed] [Google Scholar]
  2. Clackson T., Wells J. A. In vitro selection from protein and peptide libraries. Trends Biotechnol. 1994 May;12(5):173–184. doi: 10.1016/0167-7799(94)90079-5. [DOI] [PubMed] [Google Scholar]
  3. Fuh G., Mulkerrin M. G., Bass S., McFarland N., Brochier M., Bourell J. H., Light D. R., Wells J. A. The human growth hormone receptor. Secretion from Escherichia coli and disulfide bonding pattern of the extracellular binding domain. J Biol Chem. 1990 Feb 25;265(6):3111–3115. [PubMed] [Google Scholar]
  4. Haigh N. G., Webster R. E. The major coat protein of filamentous bacteriophage f1 specifically pairs in the bacterial cytoplasmic membrane. J Mol Biol. 1998 May 29;279(1):19–29. doi: 10.1006/jmbi.1998.1778. [DOI] [PubMed] [Google Scholar]
  5. Iannolo G., Minenkova O., Petruzzelli R., Cesareni G. Modifying filamentous phage capsid: limits in the size of the major capsid protein. J Mol Biol. 1995 May 12;248(4):835–844. doi: 10.1006/jmbi.1995.0264. [DOI] [PubMed] [Google Scholar]
  6. Jin L., Fendly B. M., Wells J. A. High resolution functional analysis of antibody-antigen interactions. J Mol Biol. 1992 Aug 5;226(3):851–865. doi: 10.1016/0022-2836(92)90636-x. [DOI] [PubMed] [Google Scholar]
  7. Kang A. S., Barbas C. F., Janda K. D., Benkovic S. J., Lerner R. A. Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4363–4366. doi: 10.1073/pnas.88.10.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karaolis D. K., Somara S., Maneval D. R., Jr, Johnson J. A., Kaper J. B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature. 1999 May 27;399(6734):375–379. doi: 10.1038/20715. [DOI] [PubMed] [Google Scholar]
  9. Kretzschmar T., Geiser M. Evaluation of antibodies fused to minor coat protein III and major coat protein VIII of bacteriophage M13. Gene. 1995 Mar 21;155(1):61–65. doi: 10.1016/0378-1119(94)00897-2. [DOI] [PubMed] [Google Scholar]
  10. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  11. Lowman H. B. Phage display of peptide libraries on protein scaffolds. Methods Mol Biol. 1998;87:249–264. doi: 10.1385/0-89603-392-9:249. [DOI] [PubMed] [Google Scholar]
  12. Malik P., Terry T. D., Gowda L. R., Langara A., Petukhov S. A., Symmons M. F., Welsh L. C., Marvin D. A., Perham R. N. Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J Mol Biol. 1996 Jul 5;260(1):9–21. doi: 10.1006/jmbi.1996.0378. [DOI] [PubMed] [Google Scholar]
  13. Marvin D. A., Hale R. D., Nave C., Helmer-Citterich M. Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and IKe. J Mol Biol. 1994 Jan 7;235(1):260–286. doi: 10.1016/s0022-2836(05)80032-4. [DOI] [PubMed] [Google Scholar]
  14. Nakayama G. R., Valkirs G., McGrath D., Huse W. D. Improving the copy numbers of antibody fragments expressed on the major coat protein of bacteriophage M13. Immunotechnology. 1996 Sep;2(3):197–207. doi: 10.1016/s1380-2933(96)00049-8. [DOI] [PubMed] [Google Scholar]
  15. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  16. Papavoine C. H., Christiaans B. E., Folmer R. H., Konings R. N., Hilbers C. W. Solution structure of the M13 major coat protein in detergent micelles: a basis for a model of phage assembly involving specific residues. J Mol Biol. 1998 Sep 18;282(2):401–419. doi: 10.1006/jmbi.1998.1860. [DOI] [PubMed] [Google Scholar]
  17. Pearce K. H., Jr, Potts B. J., Presta L. G., Bald L. N., Fendly B. M., Wells J. A. Mutational analysis of thrombopoietin for identification of receptor and neutralizing antibody sites. J Biol Chem. 1997 Aug 15;272(33):20595–20602. doi: 10.1074/jbc.272.33.20595. [DOI] [PubMed] [Google Scholar]
  18. Russel M. Protein-protein interactions during filamentous phage assembly. J Mol Biol. 1993 Jun 5;231(3):689–697. doi: 10.1006/jmbi.1993.1320. [DOI] [PubMed] [Google Scholar]
  19. Sidhu S. S., Weiss G. A., Wells J. A. High copy display of large proteins on phage for functional selections. J Mol Biol. 2000 Feb 18;296(2):487–495. doi: 10.1006/jmbi.1999.3465. [DOI] [PubMed] [Google Scholar]
  20. Smith G. P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985 Jun 14;228(4705):1315–1317. doi: 10.1126/science.4001944. [DOI] [PubMed] [Google Scholar]
  21. Smith George P., Petrenko Valery A. Phage Display. Chem Rev. 1997 Apr 1;97(2):391–410. doi: 10.1021/cr960065d. [DOI] [PubMed] [Google Scholar]
  22. Welsh L. C., Symmons M. F., Sturtevant J. M., Marvin D. A., Perham R. N. Structure of the capsid of Pf3 filamentous phage determined from X-ray fibre diffraction data at 3.1 A resolution. J Mol Biol. 1998;283(1):155–177. doi: 10.1006/jmbi.1998.2081. [DOI] [PubMed] [Google Scholar]
  23. Williams K. A., Glibowicka M., Li Z., Li H., Khan A. R., Chen Y. M., Wang J., Marvin D. A., Deber C. M. Packing of coat protein amphipathic and transmembrane helices in filamentous bacteriophage M13: role of small residues in protein oligomerization. J Mol Biol. 1995 Sep 8;252(1):6–14. doi: 10.1006/jmbi.1995.0469. [DOI] [PubMed] [Google Scholar]
  24. Wilson D. R., Finlay B. B. Phage display: applications, innovations, and issues in phage and host biology. Can J Microbiol. 1998 Apr;44(4):313–329. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES