Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Apr;9(4):637–646. doi: 10.1110/ps.9.4.637

Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)--identification of structural features important for the lethal action of snake venom cardiotoxins.

G Jayaraman 1, T K Kumar 1, C C Tsai 1, S Srisailam 1, S H Chou 1, C L Ho 1, C Yu 1
PMCID: PMC2144616  PMID: 10794406

Abstract

The aim of the present study is to understand the structural features responsible for the lethal activity of snake venom cardiotoxins. Comparison of the lethal potency of the five cardiotoxin isoforms isolated from the venom of Taiwan cobra (Naja naja atra) reveals that the lethal potency of CTX I and CTX V are about twice of that exhibited by CTX II, CTX III, and CTX IV. In the present study, the solution structure of CTX V has been determined at high resolution using multidimensional proton NMR spectroscopy and dynamical simulated annealing techniques. Comparison of the high resolution solution structures of CTX V with that of CTX IV reveals that the secondary structural elements in both the toxin isoforms consist of a triple and double-stranded antiparallel beta-sheet domains. Critical examination of the three-dimensional structure of CTX V shows that the residues at the tip of Loop III form a distinct "finger-shaped" projection comprising of nonpolar residues. The occurrence of the nonpolar "finger-shaped" projection leads to the formation of a prominent cleft between the residues located at the tip of Loops II and III. Interestingly, the occurrence of a backbone hydrogen bonding (Val27CO to Leu48NH) in CTX IV is found to distort the "finger-shaped" projection and consequently diminish the cleft formation at the tip of Loops II and III. Comparison of the solution structures and lethal potencies of other cardiotoxin isoforms isolated from the Taiwan cobra (Naja naja atra) venom shows that a strong correlation exists between the lethal potency and occurrence of the nonpolar "finger-shaped" projection at the tip of Loop III. Critical analysis of the structures of the various CTX isoforms from the Taiwan cobra suggest that the degree of exposure of the cationic charge (to the solvent) contributed by the invariant lysine residue at position 44 on the convex side of the CTX molecules could be another crucial factor governing their lethal potency.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhaskaran R., Huang C. C., Chang D. K., Yu C. Cardiotoxin III from the Taiwan cobra (Naja naja atra). Determination of structure in solution and comparison with short neurotoxins. J Mol Biol. 1994 Jan 28;235(4):1291–1301. doi: 10.1006/jmbi.1994.1082. [DOI] [PubMed] [Google Scholar]
  2. Bhaskaran R., Huang C. C., Tsai Y. C., Jayaraman G., Chang D. K., Yu C. Cardiotoxin II from Taiwan cobra venom, Naja naja atra. Structure in solution and comparison among homologous cardiotoxins. J Biol Chem. 1994 Sep 23;269(38):23500–23508. [PubMed] [Google Scholar]
  3. Chang J. Y., Kumar T. K., Yu C. Unfolding and refolding of cardiotoxin III elucidated by reversible conversion of the native and scrambled species. Biochemistry. 1998 May 12;37(19):6745–6751. doi: 10.1021/bi9714565. [DOI] [PubMed] [Google Scholar]
  4. Chiou S. H., Hung C. C., Huang H. C., Chen S. T., Wang K. T., Yang C. C. Sequence comparison and computer modelling of cardiotoxins and cobrotoxin isolated from Taiwan cobra. Biochem Biophys Res Commun. 1995 Jan 5;206(1):22–32. doi: 10.1006/bbrc.1995.1004. [DOI] [PubMed] [Google Scholar]
  5. Condrea E. Membrane-active polypeptides from snake venom: cardiotoxins and haemocytotoxins. Experientia. 1974 Feb 15;30(2):121–129. doi: 10.1007/BF01927688. [DOI] [PubMed] [Google Scholar]
  6. Dufton M. J., Hider R. C. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit Rev Biochem. 1983;14(2):113–171. doi: 10.3109/10409238309102792. [DOI] [PubMed] [Google Scholar]
  7. Gatineau E., Toma F., Montenay-Garestier T., Takechi M., Fromageot P., Ménez A. Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom. Biochemistry. 1987 Dec 15;26(25):8046–8055. doi: 10.1021/bi00399a004. [DOI] [PubMed] [Google Scholar]
  8. Hodges S. J., Agbaji A. S., Harvey A. L., Hider R. C. Cobra cardiotoxins. Purification, effects on skeletal muscle and structure/activity relationships [published errtum appears in Eur J Biochem 1988 Feb 1;171(3):727]. Eur J Biochem. 1987 Jun 1;165(2):373–383. doi: 10.1111/j.1432-1033.1987.tb11450.x. [DOI] [PubMed] [Google Scholar]
  9. Jahnke W., Mierke D. F., Béress L., Kessler H. Structure of cobra cardiotoxin CTX I as derived from nuclear magnetic resonance spectroscopy and distance geometry calculations. J Mol Biol. 1994 Jul 29;240(5):445–458. doi: 10.1006/jmbi.1994.1460. [DOI] [PubMed] [Google Scholar]
  10. Jang J. Y., Krishnaswamy T., Kumar S., Jayaraman G., Yang P. W., Yu C. Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry. 1997 Dec 2;36(48):14635–14641. doi: 10.1021/bi971107a. [DOI] [PubMed] [Google Scholar]
  11. Kini R. M., Evans H. J. Role of cationic residues in cytolytic activity: modification of lysine residues in the cardiotoxin from Naja nigricollis venom and correlation between cytolytic and antiplatelet activity. Biochemistry. 1989 Nov 14;28(23):9209–9215. doi: 10.1021/bi00449a037. [DOI] [PubMed] [Google Scholar]
  12. Kumar T. K., Jayaraman G., Lee C. S., Arunkumar A. I., Sivaraman T., Samuel D., Yu C. Snake venom cardiotoxins-structure, dynamics, function and folding. J Biomol Struct Dyn. 1997 Dec;15(3):431–463. doi: 10.1080/07391102.1997.10508957. [DOI] [PubMed] [Google Scholar]
  13. Kumar T. K., Yang P. W., Lin S. H., Wu C. Y., Lei B., Lo S. J., Tu S. C., Yu C. Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli. Biochem Biophys Res Commun. 1996 Feb 15;219(2):450–456. doi: 10.1006/bbrc.1996.0254. [DOI] [PubMed] [Google Scholar]
  14. Lee C. S., Kumar T. K., Lian L. Y., Cheng J. W., Yu C. Main-chain dynamics of cardiotoxin II from Taiwan cobra (Naja naja atra) as studied by carbon-13 NMR at natural abundance: delineation of the role of functionally important residues. Biochemistry. 1998 Jan 6;37(1):155–164. doi: 10.1021/bi971979c. [DOI] [PubMed] [Google Scholar]
  15. Lin Shiau S. Y., Huang M. C., Lee C. Y. Mechanism of action of cobra cardiotoxin in the skeletal muscle. J Pharmacol Exp Ther. 1976 Mar;196(3):758–770. [PubMed] [Google Scholar]
  16. Ménez A., Gatineau E., Roumestand C., Harvey A. L., Mouawad L., Gilquin B., Toma F. Do cardiotoxins possess a functional site? Structural and chemical modification studies reveal the functional site of the cardiotoxin from Naja nigricollis. Biochimie. 1990 Aug;72(8):575–588. doi: 10.1016/0300-9084(90)90121-v. [DOI] [PubMed] [Google Scholar]
  17. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  18. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  19. Rees B., Bilwes A. Three-dimensional structures of neurotoxins and cardiotoxins. Chem Res Toxicol. 1993 Jul-Aug;6(4):385–406. doi: 10.1021/tx00034a001. [DOI] [PubMed] [Google Scholar]
  20. Sivaraman T., Kumar T. K., Chang D. K., Lin W. Y., Yu C. Events in the kinetic folding pathway of a small, all beta-sheet protein. J Biol Chem. 1998 Apr 24;273(17):10181–10189. doi: 10.1074/jbc.273.17.10181. [DOI] [PubMed] [Google Scholar]
  21. Sivaraman T., Kumar T. K., Huang C. C., Yu C. The role of acetic acid in the prevention of salt-induced aggregation of snake venom cardiotoxins. Biochem Mol Biol Int. 1998 Jan;44(1):29–39. doi: 10.1080/15216549800201032. [DOI] [PubMed] [Google Scholar]
  22. Sivaraman T., Kumar T. K., Yang P. W., Yu C. Cardiotoxin-like basic protein (CLBP) from Naja naja atra is not a cardiotoxin. Toxicon. 1997 Sep;35(9):1367–1371. doi: 10.1016/s0041-0101(96)00205-x. [DOI] [PubMed] [Google Scholar]
  23. Takechi M., Tanaka Y., Hayashi K. Amino acid sequence of a cardiotoxin-like basic polypeptide (CLBP) with low cytotoxic activity isolated from the venom of the Formosan cobra (Naja naja atra). Biochem Int. 1985 Dec;11(6):795–802. [PubMed] [Google Scholar]
  24. Takechi M., Tanaka Y., Hayashi K. Binding of cardiotoxin analogue III from Formosan cobra venom to FL cells. FEBS Lett. 1986 Sep 1;205(1):143–146. doi: 10.1016/0014-5793(86)80882-1. [DOI] [PubMed] [Google Scholar]
  25. Thelestam M., Möllby R. Classification of microbial, plant and animal cytolysins based on their membrane-damaging effects of human fibroblasts. Biochim Biophys Acta. 1979 Oct 19;557(1):156–169. doi: 10.1016/0005-2736(79)90098-1. [DOI] [PubMed] [Google Scholar]
  26. Yang C. C., King K., Sun T. P. Chemical modification of lysine and histidine residues in phospholipase A2 from the venom of Naja naja atra (Taiwan cobra). Toxicon. 1981;19(5):645–659. doi: 10.1016/0041-0101(81)90102-1. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES