Abstract
At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. At low doses, pyrrhocoricin protected mice against Escherichia coli infection, but at a higher dose augmented the infection of compromised animals. Analogs of pyrrhocoricin were, therefore, synthesized to further improve protease resistance and reduce toxicity. A linear derivative containing unnatural amino acids at both termini showed high potency and lack of toxicity in vivo and an expanded cyclic analog displayed broad activity spectrum in vitro. The bioactive conformation of native pyrrhocoricin was determined by nuclear magnetic resonance spectroscopy, and similar to drosocin, reverse turns were identified as pharmacologically important elements at the termini, bridged by an extended peptide domain. Knowledge of the primary and secondary structural requirements for in vivo activity of these peptides allows the design of novel antibacterial drug leads.
Full Text
The Full Text of this article is available as a PDF (211.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
- Bulet P., Dimarcq J. L., Hetru C., Lagueux M., Charlet M., Hegy G., Van Dorsselaer A., Hoffmann J. A. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem. 1993 Jul 15;268(20):14893–14897. [PubMed] [Google Scholar]
- Bulet P., Hetru C., Dimarcq J. L., Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol. 1999 Jun-Jul;23(4-5):329–344. doi: 10.1016/s0145-305x(99)00015-4. [DOI] [PubMed] [Google Scholar]
- Bulet P., Urge L., Ohresser S., Hetru C., Otvos L., Jr Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila. Eur J Biochem. 1996 May 15;238(1):64–69. doi: 10.1111/j.1432-1033.1996.0064q.x. [DOI] [PubMed] [Google Scholar]
- Casteels P., Tempst P. Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem Biophys Res Commun. 1994 Feb 28;199(1):339–345. doi: 10.1006/bbrc.1994.1234. [DOI] [PubMed] [Google Scholar]
- Cociancich S., Dupont A., Hegy G., Lanot R., Holder F., Hetru C., Hoffmann J. A., Bulet P. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J. 1994 Jun 1;300(Pt 2):567–575. doi: 10.1042/bj3000567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cudic M., Bulet P., Hoffmann R., Craik D. J., Otvos L., Jr Chemical synthesis, antibacterial activity and conformation of diptericin, an 82-mer peptide originally isolated from insects. Eur J Biochem. 1999 Dec;266(2):549–558. doi: 10.1046/j.1432-1327.1999.00894.x. [DOI] [PubMed] [Google Scholar]
- Ertl H. C., Dietzschold B., Gore M., Otvos L., Jr, Larson J. K., Wunner W. H., Koprowski H. Induction of rabies virus-specific T-helper cells by synthetic peptides that carry dominant T-helper cell epitopes of the viral ribonucleoprotein. J Virol. 1989 Jul;63(7):2885–2892. doi: 10.1128/jvi.63.7.2885-2892.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fields G. B., Noble R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res. 1990 Mar;35(3):161–214. doi: 10.1111/j.1399-3011.1990.tb00939.x. [DOI] [PubMed] [Google Scholar]
- Gillespie J. P., Kanost M. R., Trenczek T. Biological mediators of insect immunity. Annu Rev Entomol. 1997;42:611–643. doi: 10.1146/annurev.ento.42.1.611. [DOI] [PubMed] [Google Scholar]
- Hara S., Yamakawa M. A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem J. 1995 Sep 1;310(Pt 2):651–656. doi: 10.1042/bj3100651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann R., Bulet P., Urge L., Otvös L., Jr Range of activity and metabolic stability of synthetic antibacterial glycopeptides from insects. Biochim Biophys Acta. 1999 Feb 2;1426(3):459–467. doi: 10.1016/s0304-4165(98)00169-x. [DOI] [PubMed] [Google Scholar]
- Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
- McManus A. M., Otvos L., Jr, Hoffmann R., Craik D. J. Conformational studies by NMR of the antimicrobial peptide, drosocin, and its non-glycosylated derivative: effects of glycosylation on solution conformation. Biochemistry. 1999 Jan 12;38(2):705–714. doi: 10.1021/bi981956d. [DOI] [PubMed] [Google Scholar]
- Merutka G., Dyson H. J., Wright P. E. 'Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR. 1995 Jan;5(1):14–24. doi: 10.1007/BF00227466. [DOI] [PubMed] [Google Scholar]
- Oh J. E., Hong S. Y., Lee K. H. Design, synthesis and characterization of antimicrobial pseudopeptides corresponding to membrane-active peptide. J Pept Res. 1999 Aug;54(2):129–136. doi: 10.1034/j.1399-3011.1999.00094.x. [DOI] [PubMed] [Google Scholar]
- Otvos L., Jr, Urge L., Xiang Z. Q., Krivulka G. R., Nagy L., Szendrei G. I., Ertl H. C. Glycosylation of synthetic T helper cell epitopic peptides influences their antigenic potency and conformation in a sugar location-specific manner. Biochim Biophys Acta. 1994 Oct 20;1224(1):68–76. doi: 10.1016/0167-4889(94)90114-7. [DOI] [PubMed] [Google Scholar]
- Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
- Powell M. F., Grey H., Gaeta F., Sette A., Colón S. Peptide stability in drug development: a comparison of peptide reactivity in different biological media. J Pharm Sci. 1992 Aug;81(8):731–735. doi: 10.1002/jps.2600810802. [DOI] [PubMed] [Google Scholar]
- Powell M. F., Stewart T., Otvos L., Jr, Urge L., Gaeta F. C., Sette A., Arrhenius T., Thomson D., Soda K., Colon S. M. Peptide stability in drug development. II. Effect of single amino acid substitution and glycosylation on peptide reactivity in human serum. Pharm Res. 1993 Sep;10(9):1268–1273. doi: 10.1023/a:1018953309913. [DOI] [PubMed] [Google Scholar]
- Vunnam S., Juvvadi P., Merrifield R. B. Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine. J Pept Res. 1997 Jan;49(1):59–66. doi: 10.1111/j.1399-3011.1997.tb01121.x. [DOI] [PubMed] [Google Scholar]
- Wade D., Boman A., Wåhlin B., Drain C. M., Andreu D., Boman H. G., Merrifield R. B. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4761–4765. doi: 10.1073/pnas.87.12.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]