Abstract
The pressure-induced changes in 15N enriched HPr from Staphylococcus carnosus were investigated by two-dimensional (2D) heteronuclear NMR spectroscopy at pressures ranging from atmospheric pressure up to 200 MPa. The NMR experiments allowed the simultaneous observation of the backbone and side-chain amide protons and nitrogens. Most of the resonances shift downfield with increasing pressure indicating generalized pressure-induced conformational changes. The average pressure-induced shifts for amide protons and nitrogens are 0.285 ppm GPa(-1) at 278 K and 2.20 ppm GPa(-1), respectively. At 298 K the corresponding values are 0.275 and 2.41 ppm GPa(-1). Proton and nitrogen pressure coefficients show a significant but rather small correlation (0.31) if determined for all amide resonances. When restricting the analysis to amide groups in the beta-pleated sheet, the correlation between these coefficients is with 0.59 significantly higher. As already described for other proteins, the amide proton pressure coefficients are strongly correlated to the corresponding hydrogen bond distances, and thus are indicators for the pressure-induced changes of the hydrogen bond lengths. The nitrogen shift changes appear to sense other physical phenomena such as changes of the local backbone conformation as well. Interpretation of the pressure-induced shifts in terms of structural changes in the HPr protein suggests the following picture: the four-stranded beta-pleated sheet of HPr protein is the least compressible part of the structure showing only small pressure effects. The two long helices a and c show intermediary effects that could be explained by a higher compressibility and a concomitant bending of the helices. The largest pressure coefficients are found in the active center region around His15 and in the regulatory helix b which includes the phosphorylation site Ser46 for the HPr kinase. This suggests that this part of the structure occurs in a number of different structural states whose equilibrium populations are shifted by pressure. In contrast to the surrounding residues of the active center loop that show large pressure effects, Ile14 has a very small proton and nitrogen pressure coefficient. It could represent some kind of anchoring point of the active center loop that holds it in the right place in space, whereas other parts of the loop adapt themselves to changing external conditions.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akasaka K., Li H., Yamada H., Li R., Thoresen T., Woodward C. K. Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI. Protein Sci. 1999 Oct;8(10):1946–1953. doi: 10.1110/ps.8.10.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akasaka K., Tezuka T., Yamada H. Pressure-induced changes in the folded structure of lysozyme. J Mol Biol. 1997 Sep 5;271(5):671–678. doi: 10.1006/jmbi.1997.1208. [DOI] [PubMed] [Google Scholar]
- Baxter N. J., Williamson M. P. Temperature dependence of 1H chemical shifts in proteins. J Biomol NMR. 1997 Jun;9(4):359–369. doi: 10.1023/a:1018334207887. [DOI] [PubMed] [Google Scholar]
- Chalikian T. V., Bresiauer K. J. On volume changes accompanying conformational transitions of biopolymers. Biopolymers. 1996 Nov;39(5):619–626. doi: 10.1002/(sici)1097-0282(199611)39:5<619::aid-bip1>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
- Cooper A. Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2740–2741. doi: 10.1073/pnas.73.8.2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutscher J., Reizer J., Fischer C., Galinier A., Saier M. H., Jr, Steinmetz M. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J Bacteriol. 1994 Jun;176(11):3336–3344. doi: 10.1128/jb.176.11.3336-3344.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freund J., Vértesy L., Koller K. P., Wolber V., Heintz D., Kalbitzer H. R. Complete 1H nuclear magnetic resonance assignments and structural characterization of a fusion protein of the alpha-amylase inhibitor tendamistat with the activation domain of the human immunodeficiency virus type 1 Tat protein. J Mol Biol. 1995 Jul 28;250(5):672–688. doi: 10.1006/jmbi.1995.0407. [DOI] [PubMed] [Google Scholar]
- Gekko K., Hasegawa Y. Compressibility-structure relationship of globular proteins. Biochemistry. 1986 Oct 21;25(21):6563–6571. doi: 10.1021/bi00369a034. [DOI] [PubMed] [Google Scholar]
- Hahmann M., Maurer T., Lorenz M., Hengstenberg W., Glaser S., Kalbitzer H. R. Structural studies of histidine-containing phosphocarrier protein from Enterococcus faecalis. Eur J Biochem. 1998 Feb 15;252(1):51–58. doi: 10.1046/j.1432-1327.1998.2520051.x. [DOI] [PubMed] [Google Scholar]
- Heremans K., Smeller L. Protein structure and dynamics at high pressure. Biochim Biophys Acta. 1998 Aug 18;1386(2):353–370. doi: 10.1016/s0167-4838(98)00102-2. [DOI] [PubMed] [Google Scholar]
- Hitchens T. K., Bryant R. G. Pressure dependence of amide hydrogen-deuterium exchange rates for individual sites in T4 lysozyme. Biochemistry. 1998 Apr 28;37(17):5878–5887. doi: 10.1021/bi972950b. [DOI] [PubMed] [Google Scholar]
- Inoue K., Yamada H., Imoto T., Akasaka K. High pressure NMR study of a small protein, gurmarin. J Biomol NMR. 1998 Nov;12(4):535–541. doi: 10.1023/a:1008374109437. [DOI] [PubMed] [Google Scholar]
- Jonas J., Jonas A. High-pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct. 1994;23:287–318. doi: 10.1146/annurev.bb.23.060194.001443. [DOI] [PubMed] [Google Scholar]
- Jones B. E., Rajagopal P., Klevit R. E. Phosphorylation on histidine is accompanied by localized structural changes in the phosphocarrier protein, HPr from Bacillus subtilis. Protein Sci. 1997 Oct;6(10):2107–2119. doi: 10.1002/pro.5560061006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Kharakoz D. P. Partial volumes and compressibilities of extended polypeptide chains in aqueous solution: additivity scheme and implication of protein unfolding at normal and high pressure. Biochemistry. 1997 Aug 19;36(33):10276–10285. doi: 10.1021/bi961781c. [DOI] [PubMed] [Google Scholar]
- Kitchen D. B., Reed L. H., Levy R. M. Molecular dynamics simulation of solvated protein at high pressure. Biochemistry. 1992 Oct 20;31(41):10083–10093. doi: 10.1021/bi00156a031. [DOI] [PubMed] [Google Scholar]
- Kravanja M., Engelmann R., Dossonnet V., Blüggel M., Meyer H. E., Frank R., Galinier A., Deutscher J., Schnell N., Hengstenberg W. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol. 1999 Jan;31(1):59–66. doi: 10.1046/j.1365-2958.1999.01146.x. [DOI] [PubMed] [Google Scholar]
- Kruse R., Hengstenberg W., Beneicke W., Kalbitzer H. R. Involvement of various amino- and carboxyl-terminal residues in the active site of the histidine-containing protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus: site-directed mutagenesis with the ptsH gene, biochemical characterization and NMR studies of the mutant proteins. Protein Eng. 1993 Jun;6(4):417–423. doi: 10.1093/protein/6.4.417. [DOI] [PubMed] [Google Scholar]
- Kundrot C. E., Richards F. M. Effect of hydrostatic pressure on the solvent in crystals of hen egg-white lysozyme. J Mol Biol. 1988 Mar 20;200(2):401–410. doi: 10.1016/0022-2836(88)90249-5. [DOI] [PubMed] [Google Scholar]
- Le H., Oldfield E. Correlation between 15N NMR chemical shifts in proteins and secondary structure. J Biomol NMR. 1994 May;4(3):341–348. doi: 10.1007/BF00179345. [DOI] [PubMed] [Google Scholar]
- Li H., Yamada H., Akasaka K. Effect of pressure on individual hydrogen bonds in proteins. Basic pancreatic trypsin inhibitor. Biochemistry. 1998 Feb 3;37(5):1167–1173. doi: 10.1021/bi972288j. [DOI] [PubMed] [Google Scholar]
- Li H., Yamada H., Akasaka K. Effect of pressure on the tertiary structure and dynamics of folded basic pancreatic trypsin inhibitor. Biophys J. 1999 Nov;77(5):2801–2812. doi: 10.1016/S0006-3495(99)77112-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paci E., Marchi M. Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11609–11614. doi: 10.1073/pnas.93.21.11609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pas H. H., Meyer G. H., Kruizinga W. H., Tamminga K. S., van Weeghel R. P., Robillard G. T. 31phospho-NMR demonstration of phosphocysteine as a catalytic intermediate on the Escherichia coli phosphotransferase system EIIMtl. J Biol Chem. 1991 Apr 15;266(11):6690–6692. [PubMed] [Google Scholar]
- Postma P. W., Lengeler J. W., Jacobson G. R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993 Sep;57(3):543–594. doi: 10.1128/mr.57.3.543-594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleucher J., Schwendinger M., Sattler M., Schmidt P., Schedletzky O., Glaser S. J., Sørensen O. W., Griesinger C. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR. 1994 Mar;4(2):301–306. doi: 10.1007/BF00175254. [DOI] [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner G. Activation volumes for the rotational motion of interior aromatic rings in globular proteins determined by high resolution 1H NMR at variable pressure. FEBS Lett. 1980 Apr 7;112(2):280–284. doi: 10.1016/0014-5793(80)80198-0. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
- Yamaguchi T., Yamada H., Akasaka K. Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. J Mol Biol. 1995 Jul 28;250(5):689–694. doi: 10.1006/jmbi.1995.0408. [DOI] [PubMed] [Google Scholar]
- Yamasaki K., Taniguchi Y., Takeda N., Nakano K., Yamasaki T., Kanaya S., Oobatake M. Pressure-denatured state of Escherichia coli ribonuclease HI as monitored by Fourier transform infrared and NMR spectroscopy. Biochemistry. 1998 Dec 22;37(51):18001–18009. doi: 10.1021/bi981046w. [DOI] [PubMed] [Google Scholar]
- Zollfrank J., Friedrich J., Vanderkooi J. M., Fidy J. Conformational relaxation of a low-temperature protein as probed by photochemical hole burning. Horseradish peroxidase. Biophys J. 1991 Feb;59(2):305–312. doi: 10.1016/S0006-3495(91)82224-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Nuland N. A., Boelens R., Scheek R. M., Robillard G. T. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. J Mol Biol. 1995 Feb 10;246(1):180–193. doi: 10.1006/jmbi.1994.0075. [DOI] [PubMed] [Google Scholar]