Abstract
A 20-residue peptide E5 containing five glutamates, an analog of the fusion peptide of influenza virus hemagglutinin (HA) exhibiting fusion activity at acidic pH lower than 6.0-6.5 was studied by circular dichroism (CD), Fourier transform infrared, and 1H-NMR spectroscopy in water, water/trifluoroethanol (TFE) mixtures, dodecylphosphocholine (DPC) micelles, and phospholipid vesicles. E5 became structurally ordered at pH < or = 6 and the helical content in the peptide increased in the row: water < water/TFE < DPC approximately = phospholipid vesicle while the amount of beta-structure was approximately reverse. 1H-NMR data and line-broadening effect of 5-, 16-doxylstearates on proton resonances of DPC bound peptide showed E5 forms amphiphilic alpha-helix in residues 2-18, which is flexible in 11-18 part. The analysis of the proton chemical shifts of DPC bound and CD intensity at 220 nm of phospholipid bound E5 showed that the pH dependence of helical content is characterized by the same pKa approximately 5.6. Only Glu11 and Glu15 in DPC bound peptide showed such elevated pKas, presumably due to transient hydrogen bond(s) Glu11 (Glu15) deltaCOO- (H+)...HN Glu15 that dispose(s) the side chain of Glu11 (Glu15) residue(s) close to the micelle/water interface. These glutamates are present in the HA-fusion peptide and the experimental half-maximal pH of fusion for HA and E5 peptides is approximately 5.6. Therefore, a specific anchorage of these peptides onto membrane necessary for fusion is likely driven by the protonation of the carboxylate group of Glu11 (Glu15) residue(s) participating in transient hydrogen bond(s).
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham D. J., Leo A. J. Extension of the fragment method to calculate amino acid zwitterion and side chain partition coefficients. Proteins. 1987;2(2):130–152. doi: 10.1002/prot.340020207. [DOI] [PubMed] [Google Scholar]
- Beschiaschvili G., Seelig J. Peptide binding to lipid bilayers. Nonclassical hydrophobic effect and membrane-induced pK shifts. Biochemistry. 1992 Oct 20;31(41):10044–10053. doi: 10.1021/bi00156a026. [DOI] [PubMed] [Google Scholar]
- Brown L. R., Bösch C., Wüthrich K. Location and orientation relative to the micelle surface for glucagon in mixed micelles with dodecylphosphocholine: EPR and NMR studies. Biochim Biophys Acta. 1981 Apr 6;642(2):296–312. doi: 10.1016/0005-2736(81)90447-8. [DOI] [PubMed] [Google Scholar]
- Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 Sep 1;371(6492):37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
- Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993 May 21;73(4):823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
- Chakrabartty A., Schellman J. A., Baldwin R. L. Large differences in the helix propensities of alanine and glycine. Nature. 1991 Jun 13;351(6327):586–588. doi: 10.1038/351586a0. [DOI] [PubMed] [Google Scholar]
- Chang D. K., Cheng S. F., Chien W. J. The amino-terminal fusion domain peptide of human immunodeficiency virus type 1 gp41 inserts into the sodium dodecyl sulfate micelle primarily as a helix with a conserved glycine at the micelle-water interface. J Virol. 1997 Sep;71(9):6593–6602. doi: 10.1128/jvi.71.9.6593-6602.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies S. M., Kelly S. M., Price N. C., Bradshaw J. P. Structural plasticity of the feline leukaemia virus fusion peptide: a circular dichroism study. FEBS Lett. 1998 Apr 3;425(3):415–418. doi: 10.1016/s0014-5793(98)00274-9. [DOI] [PubMed] [Google Scholar]
- Durrer P., Galli C., Hoenke S., Corti C., Glück R., Vorherr T., Brunner J. H+-induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region. J Biol Chem. 1996 Jun 7;271(23):13417–13421. doi: 10.1074/jbc.271.23.13417. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Merutka G., Waltho J. P., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J Mol Biol. 1992 Aug 5;226(3):795–817. doi: 10.1016/0022-2836(92)90633-u. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Rance M., Houghten R. A., Wright P. E., Lerner R. A. Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J Mol Biol. 1988 May 5;201(1):201–217. doi: 10.1016/0022-2836(88)90447-0. [DOI] [PubMed] [Google Scholar]
- Efremov R. G., Nolde D. E., Volynsky P. E., Chernyavsky A. A., Dubovskii P. V., Arseniev A. S. Factors important for fusogenic activity of peptides: molecular modeling study of analogs of fusion peptide of influenza virus hemagglutinin. FEBS Lett. 1999 Nov 26;462(1-2):205–210. doi: 10.1016/s0014-5793(99)01505-7. [DOI] [PubMed] [Google Scholar]
- Glaser R. W., Grüne M., Wandelt C., Ulrich A. S. Structure analysis of a fusogenic peptide sequence from the sea urchin fertilization protein bindin. Biochemistry. 1999 Feb 23;38(8):2560–2569. doi: 10.1021/bi982130e. [DOI] [PubMed] [Google Scholar]
- Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
- Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
- Ishiguro R., Kimura N., Takahashi S. Orientation of fusion-active synthetic peptides in phospholipid bilayers: determination by Fourier transform infrared spectroscopy. Biochemistry. 1993 Sep 21;32(37):9792–9797. doi: 10.1021/bi00088a034. [DOI] [PubMed] [Google Scholar]
- Ishiguro R., Matsumoto M., Takahashi S. Interaction of fusogenic synthetic peptide with phospholipid bilayers: orientation of the peptide alpha-helix and binding isotherm. Biochemistry. 1996 Apr 16;35(15):4976–4983. doi: 10.1021/bi952547+. [DOI] [PubMed] [Google Scholar]
- Kemmink J., Creighton T. E. Local conformations of peptides representing the entire sequence of bovine pancreatic trypsin inhibitor and their roles in folding. J Mol Biol. 1993 Dec 5;234(3):861–878. doi: 10.1006/jmbi.1993.1631. [DOI] [PubMed] [Google Scholar]
- Kemmink J., van Mierlo C. P., Scheek R. M., Creighton T. E. Local structure due to an aromatic-amide interaction observed by 1H-nuclear magnetic resonance spectroscopy in peptides related to the N terminus of bovine pancreatic trypsin inhibitor. J Mol Biol. 1993 Mar 5;230(1):312–322. doi: 10.1006/jmbi.1993.1144. [DOI] [PubMed] [Google Scholar]
- Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
- Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
- Lear J. D., DeGrado W. F. Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA-2. J Biol Chem. 1987 May 15;262(14):6500–6505. [PubMed] [Google Scholar]
- Lüneberg J., Martin I., Nüssler F., Ruysschaert J. M., Herrmann A. Structure and topology of the influenza virus fusion peptide in lipid bilayers. J Biol Chem. 1995 Nov 17;270(46):27606–27614. doi: 10.1074/jbc.270.46.27606. [DOI] [PubMed] [Google Scholar]
- Macosko J. C., Kim C. H., Shin Y. K. The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J Mol Biol. 1997 Apr 18;267(5):1139–1148. doi: 10.1006/jmbi.1997.0931. [DOI] [PubMed] [Google Scholar]
- Matsumoto T. Membrane destabilizing activity of influenza virus hemagglutinin-based synthetic peptide: implications of critical glycine residue in fusion peptide. Biophys Chem. 1999 Jun 7;79(2):153–162. doi: 10.1016/s0301-4622(99)00051-4. [DOI] [PubMed] [Google Scholar]
- Murata M., Nagayama K., Ohnishi S. Membrane fusion activity of succinylated melittin is triggered by protonation of its carboxyl groups. Biochemistry. 1987 Jun 30;26(13):4056–4062. doi: 10.1021/bi00387a047. [DOI] [PubMed] [Google Scholar]
- Murata M., Sugahara Y., Takahashi S., Ohnishi S. pH-dependent membrane fusion activity of a synthetic twenty amino acid peptide with the same sequence as that of the hydrophobic segment of influenza virus hemagglutinin. J Biochem. 1987 Oct;102(4):957–962. doi: 10.1093/oxfordjournals.jbchem.a122137. [DOI] [PubMed] [Google Scholar]
- Murata M., Takahashi S., Kagiwada S., Suzuki A., Ohnishi S. pH-dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and cationic peptides. Biochemistry. 1992 Feb 25;31(7):1986–1992. doi: 10.1021/bi00122a013. [DOI] [PubMed] [Google Scholar]
- Murata M., Takahashi S., Shirai Y., Kagiwada S., Hishida R., Ohnishi S. Specificity of amphiphilic anionic peptides for fusion of phospholipid vesicles. Biophys J. 1993 Mar;64(3):724–734. doi: 10.1016/S0006-3495(93)81432-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parente R. A., Nir S., Szoka F. C., Jr Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry. 1990 Sep 18;29(37):8720–8728. doi: 10.1021/bi00489a031. [DOI] [PubMed] [Google Scholar]
- Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
- Pécheur E. I., Hoekstra D., Sainte-Marie J., Maurin L., Bienvenüe A., Philippot J. R. Membrane anchorage brings about fusogenic properties in a short synthetic peptide. Biochemistry. 1997 Apr 1;36(13):3773–3781. doi: 10.1021/bi9622128. [DOI] [PubMed] [Google Scholar]
- Pécheur E. I., Sainte-Marie J., Bienven e A., Hoekstra D. Peptides and membrane fusion: towards an understanding of the molecular mechanism of protein-induced fusion. J Membr Biol. 1999 Jan 1;167(1):1–17. doi: 10.1007/s002329900466. [DOI] [PubMed] [Google Scholar]
- Rizo J., Blanco F. J., Kobe B., Bruch M. D., Gierasch L. M. Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry. 1993 May 11;32(18):4881–4894. doi: 10.1021/bi00069a025. [DOI] [PubMed] [Google Scholar]
- Scholtz J. M., Qian H., York E. J., Stewart J. M., Baldwin R. L. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers. 1991 Nov;31(13):1463–1470. doi: 10.1002/bip.360311304. [DOI] [PubMed] [Google Scholar]
- Smith L. J., Bolin K. A., Schwalbe H., MacArthur M. W., Thornton J. M., Dobson C. M. Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol. 1996 Jan 26;255(3):494–506. doi: 10.1006/jmbi.1996.0041. [DOI] [PubMed] [Google Scholar]
- Soltesz SA, Hammer DA. Lysis of Large Unilamellar Vesicles Induced by Analogs of the Fusion Peptide of Influenza Virus Hemagglutinin. J Colloid Interface Sci. 1997 Feb 15;186(2):399–409. doi: 10.1006/jcis.1996.4670. [DOI] [PubMed] [Google Scholar]
- Subbarao N. K., Parente R. A., Szoka F. C., Jr, Nadasdi L., Pongracz K. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry. 1987 Jun 2;26(11):2964–2972. doi: 10.1021/bi00385a002. [DOI] [PubMed] [Google Scholar]
- Szyperski T., Antuch W., Schick M., Betz A., Stone S. R., Wüthrich K. Transient hydrogen bonds identified on the surface of the NMR solution structure of Hirudin. Biochemistry. 1994 Aug 9;33(31):9303–9310. doi: 10.1021/bi00197a034. [DOI] [PubMed] [Google Scholar]
- Sönnichsen F. D., Van Eyk J. E., Hodges R. S., Sykes B. D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry. 1992 Sep 22;31(37):8790–8798. doi: 10.1021/bi00152a015. [DOI] [PubMed] [Google Scholar]
- Takahashi S. Conformation of membrane fusion-active 20-residue peptides with or without lipid bilayers. Implication of alpha-helix formation for membrane fusion. Biochemistry. 1990 Jul 3;29(26):6257–6264. doi: 10.1021/bi00478a021. [DOI] [PubMed] [Google Scholar]
- Ulrich A. S., Tichelaar W., Förster G., Zschörnig O., Weinkauf S., Meyer H. W. Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer. Biophys J. 1999 Aug;77(2):829–841. doi: 10.1016/S0006-3495(99)76935-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J. M. Membrane fusion. Science. 1992 Nov 6;258(5084):917–924. doi: 10.1126/science.1439803. [DOI] [PubMed] [Google Scholar]
- Williamson M. P., Havel T. F., Wüthrich K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol. 1985 Mar 20;182(2):295–315. doi: 10.1016/0022-2836(85)90347-x. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
- Wu C. S., Ikeda K., Yang J. T. Ordered conformation of polypeptides and proteins in acidic dodecyl sulfate solution. Biochemistry. 1981 Feb 3;20(3):566–570. doi: 10.1021/bi00506a019. [DOI] [PubMed] [Google Scholar]