Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 Apr;9(4):683–692. doi: 10.1110/ps.9.4.683

Oxygen binding by alpha(Fe2+)2beta(Ni2+)2 hemoglobin crystals.

S Bruno 1, S Bettati 1, M Manfredini 1, A Mozzarelli 1, M Bolognesi 1, D Deriu 1, C Rosano 1, A Tsuneshige 1, T Yonetani 1, E R Henry 1
PMCID: PMC2144622  PMID: 10794410

Abstract

Oxygen binding by hemoglobin fixed in the T state either by crystallization or by encapsulation in silica gels is apparently noncooperative. However, cooperativity might be masked by different oxygen affinities of alpha and beta subunits. Metal hybrid hemoglobins, where the noniron metal does not bind oxygen, provide the opportunity to determine the oxygen affinities of alpha and beta hemes separately. Previous studies have characterized the oxygen binding by alpha(Ni2+)2beta(Fe2+)2 crystals. Here, we have determined the three-dimensional (3D) structure and oxygen binding of alpha(Fe2+)2beta(Ni2+)2 crystals grown from polyethylene glycol solutions. Polarized absorption spectra were recorded at different oxygen pressures with light polarized parallel either to the b or c crystal axis by single crystal microspectrophotometry. The oxygen pressures at 50% saturation (p50s) are 95 +/- 3 and 87 +/- 4 Torr along the b and c crystal axes, respectively, and the corresponding Hill coefficients are 0.96 +/- 0.06 and 0.90 +/- 0.03. Analysis of the binding curves, taking into account the different projections of the alpha hemes along the optical directions, indicates that the oxygen affinity of alpha1 hemes is 1.3-fold lower than alpha2 hemes. Inspection of the 3D structure suggests that this inequivalence may arise from packing interactions of the Hb tetramer within the monoclinic crystal lattice. A similar inequivalence was found for the beta subunits of alpha(Ni2+)2beta(Fe2+)2 crystals. The average oxygen affinity of the alpha subunits (p50 = 91 Torr) is about 1.2-fold higher than the beta subunits (p50 = 110 Torr). In the absence of cooperativity, this heterogeneity yields an oxygen binding curve of Hb A with a Hill coefficient of 0.999. Since the binding curves of Hb A crystals exhibit a Hill coefficient very close to unity, these findings indicate that oxygen binding by T-state hemoglobin is noncooperative, in keeping with the Monod, Wyman, and Changeux model.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham D. J., Peascoe R. A., Randad R. S., Panikker J. X-ray diffraction study of di and tetra-ligated T-state hemoglobin from high salt crystals. J Mol Biol. 1992 Sep 20;227(2):480–492. doi: 10.1016/0022-2836(92)90902-v. [DOI] [PubMed] [Google Scholar]
  2. Ackers G. K. Deciphering the molecular code of hemoglobin allostery. Adv Protein Chem. 1998;51:185–253. doi: 10.1016/s0065-3233(08)60653-1. [DOI] [PubMed] [Google Scholar]
  3. Ackers G. K., Doyle M. L., Myers D., Daugherty M. A. Molecular code for cooperativity in hemoglobin. Science. 1992 Jan 3;255(5040):54–63. doi: 10.1126/science.1553532. [DOI] [PubMed] [Google Scholar]
  4. Arnone A., Rogers P., Blough N. V., McGourty J. L., Hoffman B. M. X-ray diffraction studies of a partially liganded hemoglobin, [alpha(FeII-CO)beta(MnII)]2. J Mol Biol. 1986 Apr 20;188(4):693–706. doi: 10.1016/s0022-2836(86)80015-8. [DOI] [PubMed] [Google Scholar]
  5. Asakura T., Lau P. W. Sequence of oxygen binding by hemoglobin. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5462–5465. doi: 10.1073/pnas.75.11.5462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bettati S., Kwiatkowski L. D., Kavanaugh J. S., Mozzarelli A., Arnone A., Rossi G. L., Noble R. W. Structure and oxygen affinity of crystalline des-his-146beta human hemoglobin in the T state. J Biol Chem. 1997 Dec 26;272(52):33077–33084. doi: 10.1074/jbc.272.52.33077. [DOI] [PubMed] [Google Scholar]
  7. Bettati S., Mozzarelli A., Perutz M. F. Allosteric mechanism of haemoglobin: rupture of salt-bridges raises the oxygen affinity of the T-structure. J Mol Biol. 1998 Aug 28;281(4):581–585. doi: 10.1006/jmbi.1998.1983. [DOI] [PubMed] [Google Scholar]
  8. Bettati S., Mozzarelli A., Rossi G. L., Tsuneshige A., Yonetani T., Eaton W. A., Henry E. R. Oxygen binding by single crystals of hemoglobin: the problem of cooperativity and inequivalence of alpha and beta subunits. Proteins. 1996 Aug;25(4):425–437. doi: 10.1002/prot.3. [DOI] [PubMed] [Google Scholar]
  9. Bettati S., Mozzarelli A. T state hemoglobin binds oxygen noncooperatively with allosteric effects of protons, inositol hexaphosphate, and chloride. J Biol Chem. 1997 Dec 19;272(51):32050–32055. doi: 10.1074/jbc.272.51.32050. [DOI] [PubMed] [Google Scholar]
  10. Brzozowski A., Derewenda Z., Dodson E., Dodson G., Grabowski M., Liddington R., Skarzyński T., Vallely D. Bonding of molecular oxygen to T state human haemoglobin. Nature. 1984 Jan 5;307(5946):74–76. doi: 10.1038/307074a0. [DOI] [PubMed] [Google Scholar]
  11. Collaborative Computational Project, Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760–763. doi: 10.1107/S0907444994003112. [DOI] [PubMed] [Google Scholar]
  12. Dvorak J. A., Stotler W. F. A controlled-environment culture system for high resolution light microscopy. Exp Cell Res. 1971 Sep;68(1):144–148. doi: 10.1016/0014-4827(71)90596-9. [DOI] [PubMed] [Google Scholar]
  13. Eaton W. A., Henry E. R., Hofrichter J., Mozzarelli A. Is cooperative oxygen binding by hemoglobin really understood? Nat Struct Biol. 1999 Apr;6(4):351–358. doi: 10.1038/7586. [DOI] [PubMed] [Google Scholar]
  14. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  15. Kavanaugh J. S., Chafin D. R., Arnone A., Mozzarelli A., Rivetti C., Rossi G. L., Kwiatkowski L. D., Noble R. W. Structure and oxygen affinity of crystalline desArg141 alpha human hemoglobin A in the T state. J Mol Biol. 1995 Apr 21;248(1):136–150. doi: 10.1006/jmbi.1995.0207. [DOI] [PubMed] [Google Scholar]
  16. Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
  17. Lalezari I., Lalezari P., Poyart C., Marden M., Kister J., Bohn B., Fermi G., Perutz M. F. New effectors of human hemoglobin: structure and function. Biochemistry. 1990 Feb 13;29(6):1515–1523. doi: 10.1021/bi00458a024. [DOI] [PubMed] [Google Scholar]
  18. Lee A. W., Karplus M., Poyart C., Bursaux E. Analysis of proton release in oxygen binding by hemoglobin: implications for the cooperative mechanism. Biochemistry. 1988 Feb 23;27(4):1285–1301. doi: 10.1021/bi00404a031. [DOI] [PubMed] [Google Scholar]
  19. Liddington R., Derewenda Z., Dodson E., Hubbard R., Dodson G. High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-state haemoglobins: T(alpha-oxy)haemoglobin and T(met)haemoglobin. J Mol Biol. 1992 Nov 20;228(2):551–579. doi: 10.1016/0022-2836(92)90842-8. [DOI] [PubMed] [Google Scholar]
  20. Liddington R., Derewenda Z., Dodson G., Harris D. Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding. Nature. 1988 Feb 25;331(6158):725–728. doi: 10.1038/331725a0. [DOI] [PubMed] [Google Scholar]
  21. Lindstrom T. R., Ho C. Functional nonequivalence of and hemes in human adult hemoglobin. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1707–1710. doi: 10.1073/pnas.69.7.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Luisi B., Liddington B., Fermi G., Shibayama N. Structure of deoxy-quaternary haemoglobin with liganded beta subunits. J Mol Biol. 1990 Jul 5;214(1):7–14. doi: 10.1016/0022-2836(90)90139-d. [DOI] [PubMed] [Google Scholar]
  23. Luisi B., Shibayama N. Structure of haemoglobin in the deoxy quaternary state with ligand bound at the alpha haems. J Mol Biol. 1989 Apr 20;206(4):723–736. doi: 10.1016/0022-2836(89)90579-2. [DOI] [PubMed] [Google Scholar]
  24. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  25. Marden M. C., Bohn B., Kister J., Poyart C. Effectors of hemoglobin. Separation of allosteric and affinity factors. Biophys J. 1990 Mar;57(3):397–403. doi: 10.1016/S0006-3495(90)82556-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miyazaki G., Morimoto H., Yun K. M., Park S. Y., Nakagawa A., Minagawa H., Shibayama N. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme. J Mol Biol. 1999 Oct 8;292(5):1121–1136. doi: 10.1006/jmbi.1999.3124. [DOI] [PubMed] [Google Scholar]
  27. Mozzarelli A., Bettati S., Rivetti C., Rossi G. L., Colotti G., Chiancone E. Cooperative oxygen binding to scapharca inaequivalvis hemoglobin in the crystal. J Biol Chem. 1996 Feb 16;271(7):3627–3632. doi: 10.1074/jbc.271.7.3627. [DOI] [PubMed] [Google Scholar]
  28. Mozzarelli A., Rivetti C., Rossi G. L., Eaton W. A., Henry E. R. Allosteric effectors do not alter the oxygen affinity of hemoglobin crystals. Protein Sci. 1997 Feb;6(2):484–489. doi: 10.1002/pro.5560060230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mozzarelli A., Rivetti C., Rossi G. L., Henry E. R., Eaton W. A. Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect. Nature. 1991 May 30;351(6325):416–419. doi: 10.1038/351416a0. [DOI] [PubMed] [Google Scholar]
  30. Mozzarelli A., Rossi G. L. Protein function in the crystal. Annu Rev Biophys Biomol Struct. 1996;25:343–365. doi: 10.1146/annurev.bb.25.060196.002015. [DOI] [PubMed] [Google Scholar]
  31. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  32. Paoli M., Liddington R., Tame J., Wilkinson A., Dodson G. Crystal structure of T state haemoglobin with oxygen bound at all four haems. J Mol Biol. 1996 Mar 8;256(4):775–792. doi: 10.1006/jmbi.1996.0124. [DOI] [PubMed] [Google Scholar]
  33. Pauling L. The Oxygen Equilibrium of Hemoglobin and Its Structural Interpretation. Proc Natl Acad Sci U S A. 1935 Apr;21(4):186–191. doi: 10.1073/pnas.21.4.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Perutz M. F. Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys. 1989 May;22(2):139–237. doi: 10.1017/s0033583500003826. [DOI] [PubMed] [Google Scholar]
  35. Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
  36. Perutz M. F., Wilkinson A. J., Paoli M., Dodson G. G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu Rev Biophys Biomol Struct. 1998;27:1–34. doi: 10.1146/annurev.biophys.27.1.1. [DOI] [PubMed] [Google Scholar]
  37. Rivetti C., Mozzarelli A., Rossi G. L., Henry E. R., Eaton W. A. Oxygen binding by single crystals of hemoglobin. Biochemistry. 1993 Mar 23;32(11):2888–2906. doi: 10.1021/bi00062a021. [DOI] [PubMed] [Google Scholar]
  38. Rivetti C., Mozzarelli A., Rossi G. L., Kwiatkowski L. D., Wierzba A. M., Noble R. W. Effect of chloride on oxygen binding to crystals of hemoglobin Rothschild (beta 37 Trp-->Arg) in the T quaternary structure. Biochemistry. 1993 Jun 29;32(25):6411–6418. doi: 10.1021/bi00076a014. [DOI] [PubMed] [Google Scholar]
  39. Royer W. E., Jr, Hendrickson W. A., Chiancone E. Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Science. 1990 Aug 3;249(4968):518–521. doi: 10.1126/science.2382132. [DOI] [PubMed] [Google Scholar]
  40. Royer W. E., Jr, Hendrickson W. A., Chiancone E. The 2.4-A crystal structure of Scapharca dimeric hemoglobin. Cooperativity based on directly communicating hemes at a novel subunit interface. J Biol Chem. 1989 Dec 15;264(35):21052–21061. [PubMed] [Google Scholar]
  41. Sawicki C. A., Gibson Q. H. Properties of the T state of human oxyhemoglobin studies by laser photolysis. J Biol Chem. 1977 Nov 10;252(21):7538–7547. [PubMed] [Google Scholar]
  42. Shibayama N., Morimoto H., Kitagawa T. Properties of chemically modified Ni(II)-Fe(II) hybrid hemoglobins. Ni(II) protoporphyrin IX as a model for a permanent deoxy-heme. J Mol Biol. 1986 Nov 20;192(2):331–336. doi: 10.1016/0022-2836(86)90368-2. [DOI] [PubMed] [Google Scholar]
  43. Shibayama N., Morimoto H., Miyazaki G. Oxygen equilibrium study and light absorption spectra of Ni(II)-Fe(II) hybrid hemoglobins. J Mol Biol. 1986 Nov 20;192(2):323–329. doi: 10.1016/0022-2836(86)90367-0. [DOI] [PubMed] [Google Scholar]
  44. Shibayama N., Morimoto H., Saigo S. Asymmetric cyanomet valency hybrid hemoglobin, (alpha+CN-beta+CN-)(alpha beta): the issue of valency exchange. Biochemistry. 1998 May 5;37(18):6221–6228. doi: 10.1021/bi980134d. [DOI] [PubMed] [Google Scholar]
  45. Shibayama N., Morimoto H., Saigo S. Reexamination of the hyper thermodynamic stability of asymmetric cyanomet valency hybrid hemoglobin, (alpha+CN-beta+CN-)(alpha beta): no preferentially populating asymmetric hybrid at equilibrium. Biochemistry. 1997 Apr 15;36(15):4375–4381. doi: 10.1021/bi970009m. [DOI] [PubMed] [Google Scholar]
  46. Shibayama N., Saigo S. Fixation of the quaternary structures of human adult haemoglobin by encapsulation in transparent porous silica gels. J Mol Biol. 1995 Aug 11;251(2):203–209. doi: 10.1006/jmbi.1995.0427. [DOI] [PubMed] [Google Scholar]
  47. Sun D. P., Zou M., Ho N. T., Ho C. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects. Biochemistry. 1997 Jun 3;36(22):6663–6673. doi: 10.1021/bi963121d. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES