Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 May;9(5):907–915. doi: 10.1110/ps.9.5.907

Alternate modes of binding in two crystal structures of alkaline phosphatase-inhibitor complexes.

K M Holtz 1, B Stec 1, J K Myers 1, S M Antonelli 1, T S Widlanski 1, E R Kantrowitz 1
PMCID: PMC2144633  PMID: 10850800

Abstract

Two high resolution crystal structures of Escherichia coli alkaline phosphatase (AP) in the presence of phosphonate inhibitors are reported. The phosphonate compounds, phosphonoacetic acid (PAA) and mercaptomethylphosphonic acid (MMP), bind competitively to AP with dissociation constants of 5.5 and 0.6 mM, respectively. The structures of the complexes of AP with PAA and MMP were refined at high resolution to crystallographic R-values of 19.0 and 17.5%, respectively. Refinement of the AP-inhibitor complexes was carried out using X-PLOR. The final round of refinement was done using SHELXL-97. Crystallographic analyses of the inhibitor complexes reveal different binding modes for the two phosphonate compounds. The significant difference in binding constants can be attributed to these alternative binding modes observed in the high resolution X-ray structures. The phosphinyl group of PAA coordinates to the active site zinc ions in a manner similar to the competitive inhibitor and product inorganic phosphate. In contrast, MMP binds with its phosphonate moiety directed toward solvent. Both enzyme-inhibitor complexes exhibit close contacts, one of which has the chemical and geometrical potential to be considered an unconventional hydrogen bond of the type C-H...X.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlow D. C., Smith A. A., Yang C. C., Short S. A., Wolfenden R. Major contribution of a carboxymethyl group to transition-state stabilization by cytidine deaminase: mutation and rescue. Biochemistry. 1995 Apr 4;34(13):4220–4224. doi: 10.1021/bi00013a010. [DOI] [PubMed] [Google Scholar]
  2. Chaidaroglou A., Brezinski D. J., Middleton S. A., Kantrowitz E. R. Function of arginine-166 in the active site of Escherichia coli alkaline phosphatase. Biochemistry. 1988 Nov 1;27(22):8338–8343. doi: 10.1021/bi00422a008. [DOI] [PubMed] [Google Scholar]
  3. Chakrabarti P. Geometry of interaction of metal ions with sulfur-containing ligands in protein structures. Biochemistry. 1989 Jul 11;28(14):6081–6085. doi: 10.1021/bi00440a052. [DOI] [PubMed] [Google Scholar]
  4. Cleland W. W., Kreevoy M. M. Low-barrier hydrogen bonds and enzymic catalysis. Science. 1994 Jun 24;264(5167):1887–1890. doi: 10.1126/science.8009219. [DOI] [PubMed] [Google Scholar]
  5. Coleman J. E. Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct. 1992;21:441–483. doi: 10.1146/annurev.bb.21.060192.002301. [DOI] [PubMed] [Google Scholar]
  6. Flint D. H., Emptage M. H., Guest J. R. Fumarase a from Escherichia coli: purification and characterization as an iron-sulfur cluster containing enzyme. Biochemistry. 1992 Oct 27;31(42):10331–10337. doi: 10.1021/bi00157a022. [DOI] [PubMed] [Google Scholar]
  7. Flint D. H. Initial kinetic and mechanistic characterization of Escherichia coli fumarase A. Arch Biochem Biophys. 1994 Jun;311(2):509–516. doi: 10.1006/abbi.1994.1269. [DOI] [PubMed] [Google Scholar]
  8. Frey P. A., Whitt S. A., Tobin J. B. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science. 1994 Jun 24;264(5167):1927–1930. doi: 10.1126/science.7661899. [DOI] [PubMed] [Google Scholar]
  9. GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
  10. Gerlt J. A., Gassman P. G. Understanding the rates of certain enzyme-catalyzed reactions: proton abstraction from carbon acids, acyl-transfer reactions, and displacement reactions of phosphodiesters. Biochemistry. 1993 Nov 16;32(45):11943–11952. doi: 10.1021/bi00096a001. [DOI] [PubMed] [Google Scholar]
  11. Holden H. M., Tronrud D. E., Monzingo A. F., Weaver L. H., Matthews B. W. Slow- and fast-binding inhibitors of thermolysin display different modes of binding: crystallographic analysis of extended phosphonamidate transition-state analogues. Biochemistry. 1987 Dec 29;26(26):8542–8553. doi: 10.1021/bi00400a008. [DOI] [PubMed] [Google Scholar]
  12. Holtz K. M., Stec B., Kantrowitz E. R. A model of the transition state in the alkaline phosphatase reaction. J Biol Chem. 1999 Mar 26;274(13):8351–8354. doi: 10.1074/jbc.274.13.8351. [DOI] [PubMed] [Google Scholar]
  13. Hough E., Hansen L. K., Birknes B., Jynge K., Hansen S., Hordvik A., Little C., Dodson E., Derewenda Z. High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Nature. 1989 Mar 23;338(6213):357–360. doi: 10.1038/338357a0. [DOI] [PubMed] [Google Scholar]
  14. Kim E. E., Wyckoff H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol. 1991 Mar 20;218(2):449–464. doi: 10.1016/0022-2836(91)90724-k. [DOI] [PubMed] [Google Scholar]
  15. Kim H., Lipscomb W. N. Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: comparison with structures of other complexes. Biochemistry. 1990 Jun 12;29(23):5546–5555. doi: 10.1021/bi00475a019. [DOI] [PubMed] [Google Scholar]
  16. Lejczak B., Kafarski P., Zygmunt J. Inhibition of aminopeptidases by aminophosphonates. Biochemistry. 1989 Apr 18;28(8):3549–3555. doi: 10.1021/bi00434a060. [DOI] [PubMed] [Google Scholar]
  17. Lopez V., Stevens T., Lindquist R. N. Vanadium ion inhibition of alkaline phosphatase-catalyzed phosphate ester hydrolysis. Arch Biochem Biophys. 1976 Jul;175(1):31–38. doi: 10.1016/0003-9861(76)90482-3. [DOI] [PubMed] [Google Scholar]
  18. Murphy J. E., Stec B., Ma L., Kantrowitz E. R. Trapping and visualization of a covalent enzyme-phosphate intermediate. Nat Struct Biol. 1997 Aug;4(8):618–622. doi: 10.1038/nsb0897-618. [DOI] [PubMed] [Google Scholar]
  19. Ohlsson J. T., Wilson I. B. The inhibition of alkaline phosphatase by periodate and permanganate. Biochim Biophys Acta. 1974 May 20;350(1):48–53. doi: 10.1016/0005-2744(74)90201-0. [DOI] [PubMed] [Google Scholar]
  20. PLOCKE D. J., VALLEE B. L. Interaction of alkaline phosphatase of E. coli with metal ions and chelating agents. Biochemistry. 1962 Nov;1:1039–1043. doi: 10.1021/bi00912a014. [DOI] [PubMed] [Google Scholar]
  21. Shan S. O., Loh S., Herschlag D. The energetics of hydrogen bonds in model systems: implications for enzymatic catalysis. Science. 1996 Apr 5;272(5258):97–101. doi: 10.1126/science.272.5258.97. [DOI] [PubMed] [Google Scholar]
  22. Sharp K. A., Honig B. Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem. 1990;19:301–332. doi: 10.1146/annurev.bb.19.060190.001505. [DOI] [PubMed] [Google Scholar]
  23. Soman K., Yang A. S., Honig B., Fletterick R. Electrical potentials in trypsin isozymes. Biochemistry. 1989 Dec 26;28(26):9918–9926. doi: 10.1021/bi00452a007. [DOI] [PubMed] [Google Scholar]
  24. Sowadski J. M., Handschumacher M. D., Murthy H. M., Foster B. A., Wyckoff H. W. Refined structure of alkaline phosphatase from Escherichia coli at 2.8 A resolution. J Mol Biol. 1985 Nov 20;186(2):417–433. doi: 10.1016/0022-2836(85)90115-9. [DOI] [PubMed] [Google Scholar]
  25. Sowadski J. M., Handschumacher M. D., Murthy H. M., Kundrot C. E., Wyckoff H. W. Crystallographic observations of the metal ion triple in the active site region of alkaline phosphatase. J Mol Biol. 1983 Oct 25;170(2):575–581. doi: 10.1016/s0022-2836(83)80162-4. [DOI] [PubMed] [Google Scholar]
  26. Usher K. C., Remington S. J., Martin D. P., Drueckhammer D. G. A very short hydrogen bond provides only moderate stabilization of an enzyme-inhibitor complex of citrate synthase. Biochemistry. 1994 Jun 28;33(25):7753–7759. doi: 10.1021/bi00191a002. [DOI] [PubMed] [Google Scholar]
  27. Volbeda A., Lahm A., Sakiyama F., Suck D. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. EMBO J. 1991 Jul;10(7):1607–1618. doi: 10.1002/j.1460-2075.1991.tb07683.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhang E., Brewer J. M., Minor W., Carreira L. A., Lebioda L. Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 A resolution. Biochemistry. 1997 Oct 14;36(41):12526–12534. doi: 10.1021/bi9712450. [DOI] [PubMed] [Google Scholar]
  29. Zhang Z. Y., Dixon J. E. Protein tyrosine phosphatases: mechanism of catalysis and substrate specificity. Adv Enzymol Relat Areas Mol Biol. 1994;68:1–36. doi: 10.1002/9780470123140.ch1. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES