Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 May;9(5):867–877. doi: 10.1110/ps.9.5.867

Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR.

M Kamihira 1, A Naito 1, S Tuzi 1, A Y Nosaka 1, H Saitô 1
PMCID: PMC2144639  PMID: 10850796

Abstract

Conformational transitions of human calcitonin (hCT) during fibril formation in the acidic and neutral conditions were investigated by high-resolution solid-state 13C NMR spectroscopy. In aqueous acetic acid solution (pH 3.3), a local alpha-helical form is present around Gly10 whereas a random coil form is dominant as viewed from Phe22, Ala26, and Ala31 in the monomer form on the basis of the 13C chemical shifts. On the other hand, a local beta-sheet form as viewed from Gly10 and Phe22, and both beta-sheet and random coil as viewed from Ala26 and Ala31 were detected in the fibril at pH 3.3. The results indicate that conformational transitions from alpha-helix to beta-sheet, and from random coil to beta-sheet forms occurred in the central and C-terminus regions, respectively, during the fibril formation. The increased 13C resonance intensities of fibrils after a certain delay time suggests that the fibrillation can be explained by a two-step reaction mechanism in which the first step is a homogeneous association to form a nucleus, and the second step is an autocatalytic heterogeneous fibrillation. In contrast to the fibril at pH 3.3, the fibril at pH 7.5 formed a local beta-sheet conformation at the central region and exhibited a random coil at the C-terminus region. Not only a hydrophobic interaction among the amphiphilic alpha-helices, but also an electrostatic interaction between charged side chains can play an important role for the fibril formation at pH 7.5 and 3.3 acting as electrostatically favorable and unfavorable interactions, respectively. These results suggest that hCT fibrils are formed by stacking antiparallel beta-sheets at pH 7.5 and a mixture of antiparallel and parallel beta-sheets at pH 3.3.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvinte T., Cudd A., Drake A. F. The structure and mechanism of formation of human calcitonin fibrils. J Biol Chem. 1993 Mar 25;268(9):6415–6422. [PubMed] [Google Scholar]
  2. Austin L. A., Heath H., 3rd Calcitonin: physiology and pathophysiology. N Engl J Med. 1981 Jan 29;304(5):269–278. doi: 10.1056/NEJM198101293040505. [DOI] [PubMed] [Google Scholar]
  3. Bauer H. H., Müller M., Goette J., Merkle H. P., Fringeli U. P. Interfacial adsorption and aggregation associated changes in secondary structure of human calcitonin monitored by ATR-FTIR spectroscopy. Biochemistry. 1994 Oct 11;33(40):12276–12282. doi: 10.1021/bi00206a034. [DOI] [PubMed] [Google Scholar]
  4. COPP D. H., CAMERON E. C., CHENEY B. A., DAVIDSON A. G., HENZE K. G. Evidence for calcitonin--a new hormone from the parathyroid that lowers blood calcium. Endocrinology. 1962 May;70:638–649. doi: 10.1210/endo-70-5-638. [DOI] [PubMed] [Google Scholar]
  5. Cohen F. E., Pan K. M., Huang Z., Baldwin M., Fletterick R. J., Prusiner S. B. Structural clues to prion replication. Science. 1994 Apr 22;264(5158):530–531. doi: 10.1126/science.7909169. [DOI] [PubMed] [Google Scholar]
  6. Copp D. H. Endocrine regulation of calcium metabolism. Annu Rev Physiol. 1970;32:61–86. doi: 10.1146/annurev.ph.32.030170.000425. [DOI] [PubMed] [Google Scholar]
  7. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  8. Epand R. M., Epand R. F., Orlowski R. C., Schlueter R. J., Boni L. T., Hui S. W. Amphipathic helix and its relationship to the interaction of calcitonin with phospholipids. Biochemistry. 1983 Oct 25;22(22):5074–5084. doi: 10.1021/bi00291a005. [DOI] [PubMed] [Google Scholar]
  9. Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol. 1985 Jun 25;183(4):611–631. doi: 10.1016/0022-2836(85)90175-5. [DOI] [PubMed] [Google Scholar]
  10. Ferrone F. A., Hofrichter J., Sunshine H. R., Eaton W. A. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys J. 1980 Oct;32(1):361–380. doi: 10.1016/S0006-3495(80)84962-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goltzman D. Examination of interspecies differences in renal and skeletal receptor binding and adenylate cyclase stimulation with human calcitonin. Endocrinology. 1980 Feb;106(2):510–518. doi: 10.1210/endo-106-2-510. [DOI] [PubMed] [Google Scholar]
  12. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  13. Habener J. F., Singer F. R., Deftos L. J., Neer R. M., Potts J. T., Jr Explanation for unusual potency of salmon calcitonin. Nat New Biol. 1971 Jul 21;232(29):91–92. doi: 10.1038/newbio232091a0. [DOI] [PubMed] [Google Scholar]
  14. Jarrett J. T., Berger E. P., Lansbury P. T., Jr The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry. 1993 May 11;32(18):4693–4697. doi: 10.1021/bi00069a001. [DOI] [PubMed] [Google Scholar]
  15. KUMAR M. A., FOSTER G. V., MACINTYRE I. FURTHER EVIDENCE FOR CALCITONIN. A RAPID-ACTING HORMONE WHICH LOWERS PLASMA-CALCIUM. Lancet. 1963 Sep 7;2(7306):480–482. doi: 10.1016/s0140-6736(63)90224-1. [DOI] [PubMed] [Google Scholar]
  16. Kanaori K., Nosaka A. Y. Characterization of human calcitonin fibrillation in aqueous urea solution by 1H NMR spectroscopy. Biochemistry. 1996 Oct 1;35(39):12671–12676. doi: 10.1021/bi961013l. [DOI] [PubMed] [Google Scholar]
  17. Kanaori K., Nosaka A. Y. Study of human calcitonin fibrillation by proton nuclear magnetic resonance spectroscopy. Biochemistry. 1995 Sep 26;34(38):12138–12143. doi: 10.1021/bi00038a006. [DOI] [PubMed] [Google Scholar]
  18. Kern D., Drakenberg T., Wikström M., Forsén S., Bang H., Fischer G. The cis/trans interconversion of the calcium regulating hormone calcitonin is catalyzed by cyclophilin. FEBS Lett. 1993 Jun 1;323(3):198–202. doi: 10.1016/0014-5793(93)81338-z. [DOI] [PubMed] [Google Scholar]
  19. Keutmann H. T., Parsons J. A., Potts J. T., Jr, Schlueter R. J. Isolation and chemical properties of two calcitonins from salmon ultimobranchial glands. J Biol Chem. 1970 Mar 25;245(6):1491–1496. [PubMed] [Google Scholar]
  20. Lomakin A., Chung D. S., Benedek G. B., Kirschner D. A., Teplow D. B. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1125–1129. doi: 10.1073/pnas.93.3.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lomakin A., Teplow D. B., Kirschner D. A., Benedek G. B. Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7942–7947. doi: 10.1073/pnas.94.15.7942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meadows R. P., Nikonowicz E. P., Jones C. R., Bastian J. W., Gorenstein D. G. Two-dimensional NMR and structure determination of salmon calcitonin in methanol. Biochemistry. 1991 Feb 5;30(5):1247–1254. doi: 10.1021/bi00219a012. [DOI] [PubMed] [Google Scholar]
  23. Meyer J. P., Pelton J. T., Hoflack J., Saudek V. Solution structure of salmon calcitonin. Biopolymers. 1991 Feb 5;31(2):233–241. doi: 10.1002/bip.360310210. [DOI] [PubMed] [Google Scholar]
  24. Motta A., Pastore A., Goud N. A., Castiglione Morelli M. A. Solution conformation of salmon calcitonin in sodium dodecyl sulfate micelles as determined by two-dimensional NMR and distance geometry calculations. Biochemistry. 1991 Oct 29;30(43):10444–10450. doi: 10.1021/bi00107a012. [DOI] [PubMed] [Google Scholar]
  25. Motta A., Temussi P. A., Wünsch E., Bovermann G. A 1H NMR study of human calcitonin in solution. Biochemistry. 1991 Mar 5;30(9):2364–2371. doi: 10.1021/bi00223a010. [DOI] [PubMed] [Google Scholar]
  26. Orlowski R. C., Epand R. M., Stafford A. R. Biologically potent analogues of salmon calcitonin which do not contain an N-terminal disulfide-bridged ring structure. Eur J Biochem. 1987 Jan 15;162(2):399–402. doi: 10.1111/j.1432-1033.1987.tb10615.x. [DOI] [PubMed] [Google Scholar]
  27. Rittel W., Maier R., Brugger M., Kamber B., Riniker B., Sieber P. Struktur-Wirkungsbeziehungen beim menschlichen Calcitonin. III. Die biologische Aktivität verkürzter oder an den Kettenenden modifizierter, synthetischer Analoger. Experientia. 1976 Feb 15;32(2):246–248. doi: 10.1007/BF01937791. [DOI] [PubMed] [Google Scholar]
  28. Samuel R. E., Salmon E. D., Briehl R. W. Nucleation and growth of fibres and gel formation in sickle cell haemoglobin. Nature. 1990 Jun 28;345(6278):833–835. doi: 10.1038/345833a0. [DOI] [PubMed] [Google Scholar]
  29. Sieber P., Riniker B., Brugger M., Kamber B., Rittel W. Menschilches Calcitonin. VI. Die Synthese von Calcitonin M. Helv Chim Acta. 1970;53(8):2135–2150. doi: 10.1002/hlca.19700530826. [DOI] [PubMed] [Google Scholar]
  30. Sipe J. D. Amyloidosis. Annu Rev Biochem. 1992;61:947–975. doi: 10.1146/annurev.bi.61.070192.004503. [DOI] [PubMed] [Google Scholar]
  31. Tanio M., Tuzi S., Yamaguchi S., Kawaminami R., Naito A., Needleman R., Lanyi J. K., Saitô H. Conformational changes of bacteriorhodopsin along the proton-conduction chain as studied with (13)C NMR of [3-(13)C]Ala-labeled protein: arg(82) may function as an information mediator. Biophys J. 1999 Sep;77(3):1577–1584. doi: 10.1016/S0006-3495(99)77005-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Taubes G. Misfolding the way to disease. Science. 1996 Mar 15;271(5255):1493–1495. doi: 10.1126/science.271.5255.1493. [DOI] [PubMed] [Google Scholar]
  33. Torchia D. A., Lyerla J. R., Jr Molecular mobility of polypeptides containing proline as determined by 13C magnetic resonance. Biopolymers. 1974 Jan;13(1):97–114. doi: 10.1002/bip.1974.360130106. [DOI] [PubMed] [Google Scholar]
  34. Tuzi S., Yamaguchi S., Tanio M., Konishi H., Inoue S., Naito A., Needleman R., Lanyi J. K., Saitô H. Location of a cation-binding site in the loop between helices F and G of bacteriorhodopsin as studied by 13C NMR. Biophys J. 1999 Mar;76(3):1523–1531. doi: 10.1016/S0006-3495(99)77311-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
  36. Wishart D. S., Sykes B. D. Chemical shifts as a tool for structure determination. Methods Enzymol. 1994;239:363–392. doi: 10.1016/s0076-6879(94)39014-2. [DOI] [PubMed] [Google Scholar]
  37. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  38. Zagorski M. G., Barrow C. J. NMR studies of amyloid beta-peptides: proton assignments, secondary structure, and mechanism of an alpha-helix----beta-sheet conversion for a homologous, 28-residue, N-terminal fragment. Biochemistry. 1992 Jun 23;31(24):5621–5631. doi: 10.1021/bi00139a028. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES