Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 May;9(5):859–866. doi: 10.1110/ps.9.5.859

Binding of Zn2+ to a Ca2+ loop allosterically attenuates the activity of factor VIIa and reduces its affinity for tissue factor.

L C Petersen 1, O H Olsen 1, L S Nielsen 1, P O Freskgård 1, E Persson 1
PMCID: PMC2144641  PMID: 10850795

Abstract

The protease domain of coagulation factor VIIa (FVIIa) is homologous to trypsin with a similar active site architecture. The catalytic function of FVIIa is regulated by allosteric modulations induced by binding of divalent metal ions and the cofactor tissue factor (TF). To further elucidate the mechanisms behind these transformations, the effects of Zn2+ binding to FVIIa in the free form and in complex with TF were investigated. Equilibrium dialysis suggested that two Zn2+ bind with high affinity to FVIIa outside the N-terminal gamma-carboxyglutamic acid (Gla) domain. Binding of Zn2+ to FVIIa, which was influenced by the presence of Ca2+, resulted in decreased amidolytic activity and slightly reduced affinity for TF. After binding to TF, FVIIa was less susceptible to zinc inhibition. Alanine substitutions for either of two histidine residues unique for FVIIa, His216, and His257, produced FVIIa variants with decreased sensitivity to Zn2+ inhibition. A search for putative Zn2+ binding sites in the crystal structure of the FVIIa protease domain was performed by Grid calculations. We identified a pair of Zn2+ binding sites in the Glu210-Glu220 Ca2+ binding loop adjacent to the so-called activation domain canonical to serine proteases. Based on our results, we propose a model that describes the conformational changes underlying the Zn2+-mediated allosteric down-regulation of FVIIa's activity.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banner D. W., D'Arcy A., Chène C., Winkler F. K., Guha A., Konigsberg W. H., Nemerson Y., Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996 Mar 7;380(6569):41–46. doi: 10.1038/380041a0. [DOI] [PubMed] [Google Scholar]
  2. Bernardo M. M., Day D. E., Halvorson H. R., Olson S. T., Shore J. D. Surface-independent acceleration of factor XII activation by zinc ions. II. Direct binding and fluorescence studies. J Biol Chem. 1993 Jun 15;268(17):12477–12483. [PubMed] [Google Scholar]
  3. Bernardo M. M., Day D. E., Olson S. T., Shore J. D. Surface-independent acceleration of factor XII activation by zinc ions. I. Kinetic characterization of the metal ion rate enhancement. J Biol Chem. 1993 Jun 15;268(17):12468–12476. [PubMed] [Google Scholar]
  4. Dickinson C. D., Kelly C. R., Ruf W. Identification of surface residues mediating tissue factor binding and catalytic function of the serine protease factor VIIa. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14379–14384. doi: 10.1073/pnas.93.25.14379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dickinson C. D., Ruf W. Active site modification of factor VIIa affects interactions of the protease domain with tissue factor. J Biol Chem. 1997 Aug 8;272(32):19875–19879. doi: 10.1074/jbc.272.32.19875. [DOI] [PubMed] [Google Scholar]
  6. Du Z., Regier D. A., Desrosiers R. C. Improved recombinant PCR mutagenesis procedure that uses alkaline-denatured plasmid template. Biotechniques. 1995 Mar;18(3):376–378. [PubMed] [Google Scholar]
  7. Freskgârd P. O., Petersen L. C., Gabriel D. A., Li X., Persson E. Conformational stability of factor VIIa: biophysical studies of thermal and guanidine hydrochloride-induced denaturation. Biochemistry. 1998 May 19;37(20):7203–7212. doi: 10.1021/bi972847m. [DOI] [PubMed] [Google Scholar]
  8. Freskgård P. O., Olsen O. H., Persson E. Structural changes in factor VIIa induced by Ca2+ and tissue factor studied using circular dichroism spectroscopy. Protein Sci. 1996 Aug;5(8):1531–1540. doi: 10.1002/pro.5560050809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodford P. J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985 Jul;28(7):849–857. doi: 10.1021/jm00145a002. [DOI] [PubMed] [Google Scholar]
  10. Gordon P. R., Woodruff C. W., Anderson H. L., O'Dell B. L. Effect of acute zinc deprivation on plasma zinc and platelet aggregation in adult males. Am J Clin Nutr. 1982 Jan;35(1):113–119. doi: 10.1093/ajcn/35.1.113. [DOI] [PubMed] [Google Scholar]
  11. Gorodetsky R., Mou X., Blankenfeld A., Marx G. Platelet multielemental composition, lability, and subcellular localization. Am J Hematol. 1993 Mar;42(3):278–283. doi: 10.1002/ajh.2830420307. [DOI] [PubMed] [Google Scholar]
  12. Head D. M., Matthews I. T., Tones M. A. Effect of divalent metal ions on the binding of tissue factor and activated factor VII. Thromb Res. 1997 Feb 15;85(4):327–339. doi: 10.1016/s0049-3848(97)00018-2. [DOI] [PubMed] [Google Scholar]
  13. Higashi S., Iwanaga S. Molecular interaction between factor VII and tissue factor. Int J Hematol. 1998 Apr;67(3):229–241. doi: 10.1016/s0925-5710(98)00018-8. [DOI] [PubMed] [Google Scholar]
  14. Higashi S., Matsumoto N., Iwanaga S. Molecular mechanism of tissue factor-mediated acceleration of factor VIIa activity. J Biol Chem. 1996 Oct 25;271(43):26569–26574. doi: 10.1074/jbc.271.43.26569. [DOI] [PubMed] [Google Scholar]
  15. Higashi S., Nishimura H., Aita K., Iwanaga S. Identification of regions of bovine factor VII essential for binding to tissue factor. J Biol Chem. 1994 Jul 22;269(29):18891–18898. [PubMed] [Google Scholar]
  16. Higashi S., Nishimura H., Fujii S., Takada K., Iwanaga S. Tissue factor potentiates the factor VIIa-catalyzed hydrolysis of an ester substrate. J Biol Chem. 1992 Sep 5;267(25):17990–17996. [PubMed] [Google Scholar]
  17. Lipscomb William N., Sträter Norbert. Recent Advances in Zinc Enzymology. Chem Rev. 1996 Nov 7;96(7):2375–2434. doi: 10.1021/cr950042j. [DOI] [PubMed] [Google Scholar]
  18. Miyata T., Funatsu A., Kato H. Chemical cross-linking of activated coagulation factor VII with soluble tissue factor: calcium ions are not essential for full amidolytic activity of the factor VIIa-tissue factor complex after complex formation. J Biochem. 1995 Apr;117(4):836–844. doi: 10.1093/oxfordjournals.jbchem.a124784. [DOI] [PubMed] [Google Scholar]
  19. Nicolaisen E. M., Petersen L. C., Thim L., Jacobsen J. K., Christensen M., Hedner U. Generation of Gla-domainless FVIIa by cathepsin G-mediated cleavage. FEBS Lett. 1992 Jul 20;306(2-3):157–160. doi: 10.1016/0014-5793(92)80989-t. [DOI] [PubMed] [Google Scholar]
  20. Pedersen A. H., Lund-Hansen T., Komiyama Y., Petersen L. C., Oestergård P. B., Kisiel W. Inhibition of recombinant human blood coagulation factor VIIa amidolytic and proteolytic activity by zinc ions. Thromb Haemost. 1991 May 6;65(5):528–534. [PubMed] [Google Scholar]
  21. Pedersen A. H., Nordfang O., Norris F., Wiberg F. C., Christensen P. M., Moeller K. B., Meidahl-Pedersen J., Beck T. C., Norris K., Hedner U. Recombinant human extrinsic pathway inhibitor. Production, isolation, and characterization of its inhibitory activity on tissue factor-initiated coagulation reactions. J Biol Chem. 1990 Oct 5;265(28):16786–16793. [PubMed] [Google Scholar]
  22. Persson E., Nielsen L. S. Site-directed mutagenesis but not gamma-carboxylation of Glu-35 in factor VIIa affects the association with tissue factor. FEBS Lett. 1996 May 6;385(3):241–243. doi: 10.1016/0014-5793(96)00400-0. [DOI] [PubMed] [Google Scholar]
  23. Petersen L. C., Persson E., Freskgård P. O. Thermal effects on an enzymatically latent conformation of coagulation factor VIIa. Eur J Biochem. 1999 Apr;261(1):124–129. doi: 10.1046/j.1432-1327.1999.00258.x. [DOI] [PubMed] [Google Scholar]
  24. Petersen L. C., Schiødt J., Christensen U. Involvement of the hydrophobic stack residues 39-44 of factor VIIa in tissue factor interactions. FEBS Lett. 1994 Jun 20;347(1):73–79. doi: 10.1016/0014-5793(94)00513-3. [DOI] [PubMed] [Google Scholar]
  25. Pike A. C., Brzozowski A. M., Roberts S. M., Olsen O. H., Persson E. Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8925–8930. doi: 10.1073/pnas.96.16.8925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ruf W., Dickinson C. D. Allosteric regulation of the cofactor-dependent serine protease coagulation factor VIIa. Trends Cardiovasc Med. 1998 Nov;8(8):350–356. doi: 10.1016/s1050-1738(98)00031-0. [DOI] [PubMed] [Google Scholar]
  27. Schousboe I. The inositol-phospholipid-accelerated activation of prekallikrein by activated factor XII at physiological ionic strength requires zinc ions and high-Mr kininogen. Eur J Biochem. 1990 Oct 24;193(2):495–499. doi: 10.1111/j.1432-1033.1990.tb19364.x. [DOI] [PubMed] [Google Scholar]
  28. Shimada T., Kato H., Iwanaga S. Accelerating effect of zinc ions on the surface-mediated activation of factor XII and prekallikrein. J Biochem. 1987 Oct;102(4):913–921. doi: 10.1093/oxfordjournals.jbchem.a122132. [DOI] [PubMed] [Google Scholar]
  29. Shobe J., Dickinson C. D., Ruf W. Regulation of the catalytic function of coagulation factor VIIa by a conformational linkage of surface residue Glu 154 to the active site. Biochemistry. 1999 Mar 2;38(9):2745–2751. doi: 10.1021/bi981951g. [DOI] [PubMed] [Google Scholar]
  30. Shore J. D., Day D. E., Bock P. E., Olson S. T. Acceleration of surface-dependent autocatalytic activation of blood coagulation factor XII by divalent metal ions. Biochemistry. 1987 Apr 21;26(8):2250–2258. doi: 10.1021/bi00382a027. [DOI] [PubMed] [Google Scholar]
  31. Sorensen B. B., Persson E., Freskgârd P. O., Kjalke M., Ezban M., Williams T., Rao L. V. Incorporation of an active site inhibitor in factor VIIa alters the affinity for tissue factor. J Biol Chem. 1997 May 2;272(18):11863–11868. doi: 10.1074/jbc.272.18.11863. [DOI] [PubMed] [Google Scholar]
  32. Thim L., Bjoern S., Christensen M., Nicolaisen E. M., Lund-Hansen T., Pedersen A. H., Hedner U. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. Biochemistry. 1988 Oct 4;27(20):7785–7793. doi: 10.1021/bi00420a030. [DOI] [PubMed] [Google Scholar]
  33. Wildgoose P., Foster D., Schiødt J., Wiberg F. C., Birktoft J. J., Petersen L. C. Identification of a calcium binding site in the protease domain of human blood coagulation factor VII: evidence for its role in factor VII-tissue factor interaction. Biochemistry. 1993 Jan 12;32(1):114–119. doi: 10.1021/bi00052a016. [DOI] [PubMed] [Google Scholar]
  34. Zhang E., St Charles R., Tulinsky A. Structure of extracellular tissue factor complexed with factor VIIa inhibited with a BPTI mutant. J Mol Biol. 1999 Feb 5;285(5):2089–2104. doi: 10.1006/jmbi.1998.2452. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES