Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 May;9(5):831–845. doi: 10.1110/ps.9.5.831

Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation.

G Esposito 1, R Michelutti 1, G Verdone 1, P Viglino 1, H Hernández 1, C V Robinson 1, A Amoresano 1, F Dal Piaz 1, M Monti 1, P Pucci 1, P Mangione 1, M Stoppini 1, G Merlini 1, G Ferri 1, V Bellotti 1
PMCID: PMC2144642  PMID: 10850793

Abstract

The solution structure and stability of N-terminally truncated beta2-microglobulin (deltaN6beta2-m), the major modification in ex vivo fibrils, have been investigated by a variety of biophysical techniques. The results show that deltaN6beta2-m has a free energy of stabilization that is reduced by 2.5 kcal/mol compared to the intact protein. Hydrogen exchange of a mixture of the truncated and full-length proteins at microM concentrations at pH 6.5 monitored by electrospray mass spectrometry reveals that deltaN6beta2-m is significantly less protected than its wild-type counterpart. Analysis of deltaN6beta2-m by NMR shows that this loss of protection occurs in beta strands I, III, and part of II. At mM concentration gel filtration analysis shows that deltaN6beta2-m forms a series of oligomers, including trimers and tetramers, and NMR analysis indicates that strand V is involved in intermolecular interactions that stabilize this association. The truncated species of beta2-microglobulin was found to have a higher tendency to self-associate than the intact molecule, and unlike wild-type protein, is able to form amyloid fibrils at physiological pH. Limited proteolysis experiments and analysis by mass spectrometry support the conformational modifications identified by NMR and suggest that deltaN6beta2-m could be a key intermediate of a proteolytic pathway of beta2-microglobulin. Overall, the data suggest that removal of the six residues from the N-terminus of beta2-microglobulin has a major effect on the stability of the overall fold. Part of the tertiary structure is preserved substantially by the disulfide bridge between Cys25 and Cys80, but the pairing between beta-strands far removed from this constrain is greatly perturbed.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellotti V., Stoppini M., Mangione P., Sunde M., Robinson C., Asti L., Brancaccio D., Ferri G. Beta2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur J Biochem. 1998 Nov 15;258(1):61–67. doi: 10.1046/j.1432-1327.1998.2580061.x. [DOI] [PubMed] [Google Scholar]
  2. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  3. Booth D. R., Sunde M., Bellotti V., Robinson C. V., Hutchinson W. L., Fraser P. E., Hawkins P. N., Dobson C. M., Radford S. E., Blake C. C. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature. 1997 Feb 27;385(6619):787–793. doi: 10.1038/385787a0. [DOI] [PubMed] [Google Scholar]
  4. Botto M., Hawkins P. N., Bickerstaff M. C., Herbert J., Bygrave A. E., McBride A., Hutchinson W. L., Tennent G. A., Walport M. J., Pepys M. B. Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med. 1997 Aug;3(8):855–859. doi: 10.1038/nm0897-855. [DOI] [PubMed] [Google Scholar]
  5. Canet D., Sunde M., Last A. M., Miranker A., Spencer A., Robinson C. V., Dobson C. M. Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry. 1999 May 18;38(20):6419–6427. doi: 10.1021/bi983037t. [DOI] [PubMed] [Google Scholar]
  6. Capeillere-Blandin C., Delaveau T., Descamps-Latscha B. Structural modifications of human beta 2 microglobulin treated with oxygen-derived radicals. Biochem J. 1991 Jul 1;277(Pt 1):175–182. doi: 10.1042/bj2770175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Connors L. H., Shirahama T., Skinner M., Fenves A., Cohen A. S. In vitro formation of amyloid fibrils from intact beta 2-microglobulin. Biochem Biophys Res Commun. 1985 Sep 30;131(3):1063–1068. doi: 10.1016/0006-291x(85)90198-6. [DOI] [PubMed] [Google Scholar]
  8. Gejyo F., Yamada T., Odani S., Nakagawa Y., Arakawa M., Kunitomo T., Kataoka H., Suzuki M., Hirasawa Y., Shirahama T. A new form of amyloid protein associated with chronic hemodialysis was identified as beta 2-microglobulin. Biochem Biophys Res Commun. 1985 Jun 28;129(3):701–706. doi: 10.1016/0006-291x(85)91948-5. [DOI] [PubMed] [Google Scholar]
  9. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  10. Isenman D. E., Painter R. H., Dorrington K. J. The structure and function of immunoglobulin domains: studies with beta-2-microglobulin on the role of the intrachain disulfide bond. Proc Natl Acad Sci U S A. 1975 Feb;72(2):548–552. doi: 10.1073/pnas.72.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kelly J. W. Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases. Structure. 1997 May 15;5(5):595–600. doi: 10.1016/s0969-2126(97)00215-3. [DOI] [PubMed] [Google Scholar]
  12. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  13. LeVine H., 3rd Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 1993 Mar;2(3):404–410. doi: 10.1002/pro.5560020312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Linke R. P., Bommer J., Ritz E., Waldherr R., Eulitz M. Amyloid kidney stones of uremic patients consist of beta 2-microglobulin fragments. Biochem Biophys Res Commun. 1986 Apr 29;136(2):665–671. doi: 10.1016/0006-291x(86)90492-4. [DOI] [PubMed] [Google Scholar]
  15. Linke R. P., Hampl H., Bartel-Schwarze S., Eulitz M. Beta 2-microglobulin, different fragments and polymers thereof in synovial amyloid in long-term hemodialysis. Biol Chem Hoppe Seyler. 1987 Feb;368(2):137–144. doi: 10.1515/bchm3.1987.368.1.137. [DOI] [PubMed] [Google Scholar]
  16. Linke R. P., Hampl H., Lobeck H., Ritz E., Bommer J., Waldherr R., Eulitz M. Lysine-specific cleavage of beta 2-microglobulin in amyloid deposits associated with hemodialysis. Kidney Int. 1989 Oct;36(4):675–681. doi: 10.1038/ki.1989.245. [DOI] [PubMed] [Google Scholar]
  17. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  18. Markley J. L., Bax A., Arata Y., Hilbers C. W., Kaptein R., Sykes B. D., Wright P. E., Wüthrich K. Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. J Biomol NMR. 1998 Jul;12(1):1–23. doi: 10.1023/a:1008290618449. [DOI] [PubMed] [Google Scholar]
  19. Merlini G., Ascari E., Amboldi N., Bellotti V., Arbustini E., Perfetti V., Ferrari M., Zorzoli I., Marinone M. G., Garini P. Interaction of the anthracycline 4'-iodo-4'-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2959–2963. doi: 10.1073/pnas.92.7.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Miyata T., Oda O., Inagi R., Iida Y., Araki N., Yamada N., Horiuchi S., Taniguchi N., Maeda K., Kinoshita T. beta 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest. 1993 Sep;92(3):1243–1252. doi: 10.1172/JCI116696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nettleton E. J., Sunde M., Lai Z., Kelly J. W., Dobson C. M., Robinson C. V. Protein subunit interactions and structural integrity of amyloidogenic transthyretins: evidence from electrospray mass spectrometry. J Mol Biol. 1998 Aug 21;281(3):553–564. doi: 10.1006/jmbi.1998.1937. [DOI] [PubMed] [Google Scholar]
  22. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  23. Okon M., Bray P., Vucelić D. 1H NMR assignments and secondary structure of human beta 2-microglobulin in solution. Biochemistry. 1992 Sep 22;31(37):8906–8915. doi: 10.1021/bi00152a030. [DOI] [PubMed] [Google Scholar]
  24. Orrù S., Dal Piaz F., Casbarra A., Biasiol G., De Francesco R., Steinkühler C., Pucci P. Conformational changes in the NS3 protease from hepatitis C virus strain Bk monitored by limited proteolysis and mass spectrometry. Protein Sci. 1999 Jul;8(7):1445–1454. doi: 10.1110/ps.8.7.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  26. Radford S. E., Dobson C. M. From computer simulations to human disease: emerging themes in protein folding. Cell. 1999 Apr 30;97(3):291–298. doi: 10.1016/s0092-8674(00)80739-4. [DOI] [PubMed] [Google Scholar]
  27. Scaloni A., Miraglia N., Orrù S., Amodeo P., Motta A., Marino G., Pucci P. Topology of the calmodulin-melittin complex. J Mol Biol. 1998 Apr 10;277(4):945–958. doi: 10.1006/jmbi.1998.1629. [DOI] [PubMed] [Google Scholar]
  28. Scaloni A., Monti M., Acquaviva R., Tell G., Damante G., Formisano S., Pucci P. Topology of the thyroid transcription factor 1 homeodomain-DNA complex. Biochemistry. 1999 Jan 5;38(1):64–72. doi: 10.1021/bi981300k. [DOI] [PubMed] [Google Scholar]
  29. Stoppini M. S., Arcidiaco P., Mangione P., Giorgetti S., Brancaccio D., Bellotti V. Detection of fragments of beta2-microglobulin in amyloid fibrils. Kidney Int. 2000 Jan;57(1):349–350. doi: 10.1046/j.1523-1755.2000.00851.x. [DOI] [PubMed] [Google Scholar]
  30. Stoppini M., Bellotti V., Mangione P., Merlini G., Ferri G. Use of anti-(beta2 microglobulin) mAb to study formation of amyloid fibrils. Eur J Biochem. 1997 Oct 1;249(1):21–26. doi: 10.1111/j.1432-1033.1997.t01-2-00021.x. [DOI] [PubMed] [Google Scholar]
  31. Sunde M., Blake C. C. From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q Rev Biophys. 1998 Feb;31(1):1–39. doi: 10.1017/s0033583598003400. [DOI] [PubMed] [Google Scholar]
  32. Sunde M., Serpell L. C., Bartlam M., Fraser P. E., Pepys M. B., Blake C. C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997 Oct 31;273(3):729–739. doi: 10.1006/jmbi.1997.1348. [DOI] [PubMed] [Google Scholar]
  33. Tennent G. A., Lovat L. B., Pepys M. B. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4299–4303. doi: 10.1073/pnas.92.10.4299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsunenaga M., Goto Y., Kawata Y., Hamaguchi K. Unfolding and refolding of a type kappa immunoglobulin light chain and its variable and constant fragments. Biochemistry. 1987 Sep 22;26(19):6044–6051. doi: 10.1021/bi00393a015. [DOI] [PubMed] [Google Scholar]
  35. Wishart D. S., Bigam C. G., Holm A., Hodges R. S., Sykes B. D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67–81. doi: 10.1007/BF00227471. [DOI] [PubMed] [Google Scholar]
  36. Wishart D. S., Sykes B. D. Chemical shifts as a tool for structure determination. Methods Enzymol. 1994;239:363–392. doi: 10.1016/s0076-6879(94)39014-2. [DOI] [PubMed] [Google Scholar]
  37. Wood S. J., Wetzel R., Martin J. D., Hurle M. R. Prolines and amyloidogenicity in fragments of the Alzheimer's peptide beta/A4. Biochemistry. 1995 Jan 24;34(3):724–730. doi: 10.1021/bi00003a003. [DOI] [PubMed] [Google Scholar]
  38. Zappacosta F., Pessi A., Bianchi E., Venturini S., Sollazzo M., Tramontano A., Marino G., Pucci P. Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: the case of Minibody. Protein Sci. 1996 May;5(5):802–813. doi: 10.1002/pro.5560050502. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES