Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 2000 May;9(5):886–897. doi: 10.1110/ps.9.5.886

Conformational flexibility in the apolipoprotein E amino-terminal domain structure determined from three new crystal forms: implications for lipid binding.

B W Segelke 1, M Forstner 1, M Knapp 1, S D Trakhanov 1, S Parkin 1, Y M Newhouse 1, H D Bellamy 1, K H Weisgraber 1, B Rupp 1
PMCID: PMC2144644  PMID: 10850798

Abstract

An amino-terminal fragment of human apolipoprotein E3 (residues 1-165) has been expressed and crystallized in three different crystal forms under similar crystallization conditions. One crystal form has nearly identical cell dimensions to the previously reported orthorhombic (P2(1)2(1)2(1)) crystal form of the amino-terminal 22 kDa fragment of apolipoprotein E (residues 1-191). A second orthorhombic crystal form (P2(1)2(1)2(1) with cell dimensions differing from the first form) and a trigonal (P3(1)21) crystal form were also characterized. The structures of the first orthorhombic and the trigonal form were determined by seleno-methionine multiwavelength anomalous dispersion, and the structure of the second orthorhombic form was determined by molecular replacement using the structure from the trigonal form as a search model. A combination of modern experimental and computational techniques provided high-quality electron-density maps, which revealed new features of the apolipoprotein E structure, including an unambiguously traced loop connecting helices 2 and 3 in the four-helix bundle and a number of multiconformation side chains. The three crystal forms contain a common intermolecular, antiparallel packing arrangement. The electrostatic complimentarity observed in this antiparallel packing resembles the interaction of apolipoprotein E with the monoclonal antibody 2E8 and the low density lipoprotein receptor. Superposition of the model structures from all three crystal forms reveals flexibility and pronounced kinks in helices near one end of the four-helix bundle. This mobility at one end of the molecule provides new insights into the structural changes in apolipoprotein E that occur with lipid association.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):30–42. doi: 10.1107/S0907444995008754. [DOI] [PubMed] [Google Scholar]
  2. Aggerbeck L. P., Wetterau J. R., Weisgraber K. H., Wu C. S., Lindgren F. T. Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains. J Biol Chem. 1988 May 5;263(13):6249–6258. [PubMed] [Google Scholar]
  3. Avila E. M., Holdsworth G., Sasaki N., Jackson R. L., Harmony J. A. Apoprotein E suppresses phytohemagglutinin-activated phospholipid turnover in peripheral blood mononuclear cells. J Biol Chem. 1982 May 25;257(10):5900–5909. [PubMed] [Google Scholar]
  4. Breiter D. R., Kanost M. R., Benning M. M., Wesenberg G., Law J. H., Wells M. A., Rayment I., Holden H. M. Molecular structure of an apolipoprotein determined at 2.5-A resolution. Biochemistry. 1991 Jan 22;30(3):603–608. doi: 10.1021/bi00217a002. [DOI] [PubMed] [Google Scholar]
  5. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., Roses A. D., Haines J. L., Pericak-Vance M. A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993 Aug 13;261(5123):921–923. doi: 10.1126/science.8346443. [DOI] [PubMed] [Google Scholar]
  6. Cowtan K. D., Main P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):43–48. doi: 10.1107/S090744499500761X. [DOI] [PubMed] [Google Scholar]
  7. De Pauw M., Vanloo B., Weisgraber K., Rosseneu M. Comparison of lipid-binding and lecithin:cholesterol acyltransferase activation of the amino- and carboxyl-terminal domains of human apolipoprotein E3. Biochemistry. 1995 Aug 29;34(34):10953–10966. doi: 10.1021/bi00034a030. [DOI] [PubMed] [Google Scholar]
  8. Dong L. M., Parkin S., Trakhanov S. D., Rupp B., Simmons T., Arnold K. S., Newhouse Y. M., Innerarity T. L., Weisgraber K. H. Novel mechanism for defective receptor binding of apolipoprotein E2 in type III hyperlipoproteinemia. Nat Struct Biol. 1996 Aug;3(8):718–722. doi: 10.1038/nsb0896-718. [DOI] [PubMed] [Google Scholar]
  9. Dong L. M., Weisgraber K. H. Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem. 1996 Aug 9;271(32):19053–19057. doi: 10.1074/jbc.271.32.19053. [DOI] [PubMed] [Google Scholar]
  10. Dong L. M., Wilson C., Wardell M. R., Simmons T., Mahley R. W., Weisgraber K. H., Agard D. A. Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J Biol Chem. 1994 Sep 2;269(35):22358–22365. [PubMed] [Google Scholar]
  11. Eichner J. E., Kuller L. H., Orchard T. J., Grandits G. A., McCallum L. M., Ferrell R. E., Neaton J. D. Relation of apolipoprotein E phenotype to myocardial infarction and mortality from coronary artery disease. Am J Cardiol. 1993 Jan 15;71(2):160–165. doi: 10.1016/0002-9149(93)90732-r. [DOI] [PubMed] [Google Scholar]
  12. Forstner M., Peters-Libeu C., Contreras-Forrest E., Newhouse Y., Knapp M., Rupp B., Weisgraber K. H. Carboxyl-terminal domain of human apolipoprotein E: expression, purification, and crystallization. Protein Expr Purif. 1999 Nov;17(2):267–272. doi: 10.1006/prep.1999.1144. [DOI] [PubMed] [Google Scholar]
  13. Hamlin R. Multiwire area X-ray diffractometers. Methods Enzymol. 1985;114:416–452. doi: 10.1016/0076-6879(85)14029-2. [DOI] [PubMed] [Google Scholar]
  14. Harris N. L., Presnell S. R., Cohen F. E. Four helix bundle diversity in globular proteins. J Mol Biol. 1994 Mar 11;236(5):1356–1368. doi: 10.1016/0022-2836(94)90063-9. [DOI] [PubMed] [Google Scholar]
  15. Howard A. J., Nielsen C., Xuong N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 1985;114:452–472. doi: 10.1016/0076-6879(85)14030-9. [DOI] [PubMed] [Google Scholar]
  16. Hui D. Y., Harmony J. A., Innerarity T. L., Mahley R. W. Immunoregulatory plasma lipoproteins. Role of apoprotein E and apoprotein B. J Biol Chem. 1980 Dec 25;255(24):11775–11781. [PubMed] [Google Scholar]
  17. Innerarity T. L., Friedlander E. J., Rall S. C., Jr, Weisgraber K. H., Mahley R. W. The receptor-binding domain of human apolipoprotein E. Binding of apolipoprotein E fragments. J Biol Chem. 1983 Oct 25;258(20):12341–12347. [PubMed] [Google Scholar]
  18. Innerarity T. L., Pitas R. E., Mahley R. W. Binding of arginine-rich (E) apoprotein after recombination with phospholipid vesicles to the low density lipoprotein receptors of fibroblasts. J Biol Chem. 1979 May 25;254(10):4186–4190. [PubMed] [Google Scholar]
  19. Ishigami M., Swertfeger D. K., Granholm N. A., Hui D. Y. Apolipoprotein E inhibits platelet-derived growth factor-induced vascular smooth muscle cell migration and proliferation by suppressing signal transduction and preventing cell entry to G1 phase. J Biol Chem. 1998 Aug 7;273(32):20156–20161. doi: 10.1074/jbc.273.32.20156. [DOI] [PubMed] [Google Scholar]
  20. Kissinger C. R., Gehlhaar D. K., Fogel D. B. Rapid automated molecular replacement by evolutionary search. Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):484–491. doi: 10.1107/s0907444998012517. [DOI] [PubMed] [Google Scholar]
  21. Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
  22. LeMaster D. M., Richards F. M. 1H-15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labeled by residue type. Biochemistry. 1985 Dec 3;24(25):7263–7268. doi: 10.1021/bi00346a036. [DOI] [PubMed] [Google Scholar]
  23. Luc G., Bard J. M., Arveiler D., Evans A., Cambou J. P., Bingham A., Amouyel P., Schaffer P., Ruidavets J. B., Cambien F. Impact of apolipoprotein E polymorphism on lipoproteins and risk of myocardial infarction. The ECTIM Study. Arterioscler Thromb. 1994 Sep;14(9):1412–1419. doi: 10.1161/01.atv.14.9.1412. [DOI] [PubMed] [Google Scholar]
  24. Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988 Apr 29;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
  25. Mayeux R., Ottman R., Maestre G., Ngai C., Tang M. X., Ginsberg H., Chun M., Tycko B., Shelanski M. Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer's disease. Neurology. 1995 Mar;45(3 Pt 1):555–557. doi: 10.1212/wnl.45.3.555. [DOI] [PubMed] [Google Scholar]
  26. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  27. Narayanaswami V., Wang J., Kay C. M., Scraba D. G., Ryan R. O. Disulfide bond engineering to monitor conformational opening of apolipophorin III during lipid binding. J Biol Chem. 1996 Oct 25;271(43):26855–26862. doi: 10.1074/jbc.271.43.26855. [DOI] [PubMed] [Google Scholar]
  28. Narayanaswami V., Wang J., Schieve D., Kay C. M., Ryan R. O. A molecular trigger of lipid binding-induced opening of a helix bundle exchangeable apolipoprotein. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4366–4371. doi: 10.1073/pnas.96.8.4366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Perrakis A., Sixma T. K., Wilson K. S., Lamzin V. S. wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Crystallogr D Biol Crystallogr. 1997 Jul 1;53(Pt 4):448–455. doi: 10.1107/S0907444997005696. [DOI] [PubMed] [Google Scholar]
  30. RAMACHANDRAN G. N., RAMAKRISHNAN C., SASISEKHARAN V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95–99. doi: 10.1016/s0022-2836(63)80023-6. [DOI] [PubMed] [Google Scholar]
  31. Raffai R., Maurice R., Weisgraber K., Innerarity T., Wang X., MacKenzie R., Hirama T., Watson D., Rassart E., Milne R. Molecular characterization of two monoclonal antibodies specific for the LDL receptor-binding site of human apolipoprotein E. J Lipid Res. 1995 Sep;36(9):1905–1918. [PubMed] [Google Scholar]
  32. Rall S. C., Jr, Mahley R. W. The role of apolipoprotein E genetic variants in lipoprotein disorders. J Intern Med. 1992 Jun;231(6):653–659. doi: 10.1111/j.1365-2796.1992.tb01254.x. [DOI] [PubMed] [Google Scholar]
  33. Rall S. C., Jr, Weisgraber K. H., Mahley R. W. Human apolipoprotein E. The complete amino acid sequence. J Biol Chem. 1982 Apr 25;257(8):4171–4178. [PubMed] [Google Scholar]
  34. Raussens V., Fisher C. A., Goormaghtigh E., Ryan R. O., Ruysschaert J. M. The low density lipoprotein receptor active conformation of apolipoprotein E. Helix organization in n-terminal domain-phospholipid disc particles. J Biol Chem. 1998 Oct 2;273(40):25825–25830. doi: 10.1074/jbc.273.40.25825. [DOI] [PubMed] [Google Scholar]
  35. Reyland M. E., Williams D. L. Suppression of cAMP-mediated signal transduction in mouse adrenocortical cells which express apolipoprotein E. J Biol Chem. 1991 Nov 5;266(31):21099–21104. [PubMed] [Google Scholar]
  36. Saunders A. M., Strittmatter W. J., Schmechel D., George-Hyslop P. H., Pericak-Vance M. A., Joo S. H., Rosi B. L., Gusella J. F., Crapper-MacLachlan D. R., Alberts M. J. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology. 1993 Aug;43(8):1467–1472. doi: 10.1212/wnl.43.8.1467. [DOI] [PubMed] [Google Scholar]
  37. Scapin G., Sacchettini J. C., Dessen A., Bhatia M., Grubmeyer C. Primary structure and crystallization of orotate phosphoribosyltransferase from Salmonella typhimurium. J Mol Biol. 1993 Apr 20;230(4):1304–1308. doi: 10.1006/jmbi.1993.1244. [DOI] [PubMed] [Google Scholar]
  38. Segrest J. P., Garber D. W., Brouillette C. G., Harvey S. C., Anantharamaiah G. M. The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv Protein Chem. 1994;45:303–369. doi: 10.1016/s0065-3233(08)60643-9. [DOI] [PubMed] [Google Scholar]
  39. Segrest J. P., Jones M. K., De Loof H., Brouillette C. G., Venkatachalapathi Y. V., Anantharamaiah G. M. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res. 1992 Feb;33(2):141–166. [PubMed] [Google Scholar]
  40. Slooter A. J., Tang M. X., van Duijn C. M., Stern Y., Ott A., Bell K., Breteler M. M., Van Broeckhoven C., Tatemichi T. K., Tycko B. Apolipoprotein E epsilon4 and the risk of dementia with stroke. A population-based investigation. JAMA. 1997 Mar 12;277(10):818–821. doi: 10.1001/jama.277.10.818. [DOI] [PubMed] [Google Scholar]
  41. Strittmatter W. J., Saunders A. M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G. S., Roses A. D. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977–1981. doi: 10.1073/pnas.90.5.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  43. Teasdale G. M., Nicoll J. A., Murray G., Fiddes M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet. 1997 Oct 11;350(9084):1069–1071. doi: 10.1016/S0140-6736(97)04318-3. [DOI] [PubMed] [Google Scholar]
  44. Terwilliger T. C., Berendzen J. Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):849–861. doi: 10.1107/S0907444999000839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Trakhanov S., Parkin S., Raffaï R., Milne R., Newhouse Y. M., Weisgraber K. H., Rupp B. Structure of a monoclonal 2E8 Fab antibody fragment specific for the low-density lipoprotein-receptor binding region of apolipoprotein E refined at 1.9 A. Acta Crystallogr D Biol Crystallogr. 1999 Jan 1;55(Pt 1):122–128. doi: 10.1107/S090744499800938X. [DOI] [PubMed] [Google Scholar]
  46. Utermann G., Hardewig A., Zimmer F. Apolipoprotein E phenotypes in patients with myocardial infarction. Hum Genet. 1984;65(3):237–241. doi: 10.1007/BF00286509. [DOI] [PubMed] [Google Scholar]
  47. Vogel T., Weisgraber K. H., Zeevi M. I., Ben-Artzi H., Levanon A. Z., Rall S. C., Jr, Innerarity T. L., Hui D. Y., Taylor J. M., Kanner D. Human apolipoprotein E expression in Escherichia coli: structural and functional identity of the bacterially produced protein with plasma apolipoprotein E. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8696–8700. doi: 10.1073/pnas.82.24.8696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  49. Wang J., Gagné S. M., Sykes B. D., Ryan R. O. Insight into lipid surface recognition and reversible conformational adaptations of an exchangeable apolipoprotein by multidimensional heteronuclear NMR techniques. J Biol Chem. 1997 Jul 18;272(29):17912–17920. doi: 10.1074/jbc.272.29.17912. [DOI] [PubMed] [Google Scholar]
  50. Weisgraber K. H. Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. J Lipid Res. 1990 Aug;31(8):1503–1511. [PubMed] [Google Scholar]
  51. Weisgraber K. H. Apolipoprotein E: structure-function relationships. Adv Protein Chem. 1994;45:249–302. doi: 10.1016/s0065-3233(08)60642-7. [DOI] [PubMed] [Google Scholar]
  52. Weisgraber K. H., Rall S. C., Jr, Mahley R. W. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem. 1981 Sep 10;256(17):9077–9083. [PubMed] [Google Scholar]
  53. Wetterau J. R., Aggerbeck L. P., Rall S. C., Jr, Weisgraber K. H. Human apolipoprotein E3 in aqueous solution. I. Evidence for two structural domains. J Biol Chem. 1988 May 5;263(13):6240–6248. [PubMed] [Google Scholar]
  54. Wilson C., Mau T., Weisgraber K. H., Wardell M. R., Mahley R. W., Agard D. A. Salt bridge relay triggers defective LDL receptor binding by a mutant apolipoprotein. Structure. 1994 Aug 15;2(8):713–718. doi: 10.1016/s0969-2126(00)00072-1. [DOI] [PubMed] [Google Scholar]
  55. Wilson C., Wardell M. R., Weisgraber K. H., Mahley R. W., Agard D. A. Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science. 1991 Jun 28;252(5014):1817–1822. doi: 10.1126/science.2063194. [DOI] [PubMed] [Google Scholar]
  56. Zeng Z., Castaño A. R., Segelke B. W., Stura E. A., Peterson P. A., Wilson I. A. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science. 1997 Jul 18;277(5324):339–345. doi: 10.1126/science.277.5324.339. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES